...
首页> 外文期刊>European Journal of Plant Pathology >Information networks for disease: commonalities in human management networks and within-host signalling networks
【24h】

Information networks for disease: commonalities in human management networks and within-host signalling networks

机译:疾病信息网络:人类管理网络和主机内部信令网络的共性

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

Network models of human epidemics can often be improved by including the effects of behaviour modification in response to information about the approach of epidemics. Similarly, there are opportunities to incorporate the flow of information and its effects in plant disease epidemics in network models at multiple scales. (1) In the case of human management networks for plant disease, each node of a network has four main components: plant communities, microbial communities, human information (among researchers, extension agents, farmers, and other stakeholders), and environmental conditions, along with their interactions. The links between nodes, representing the rate of movement between them, have three parts: the rates for plant materials, the rates for microbes, and the rates for information. Network resilience for information flow is an important goal for such systems. Game theory can provide insights into how human agents decide how to invest their efforts in strengthening information networks, and how policies can support more resilient networks. (2) For the case of within-plant signalling networks, each node has a comparable set of four main components: plant signals (often in the form of phytohormones) and development status, microbial communities and plant disease status, microbial signals (often in the form of quorum sensing molecules), and micro-environmental conditions, along with their interactions. In effect, human information is replaced by plant signals and microbial signals in this second model. The links between nodes have three parts: the rates for microbes, the rates for microbial signals (which may move separately from the microbes, themselves), and the rates for plant signals. Understanding how to enhance adaptive plant signalling networks and microbial signalling networks that support plant productivity, and disrupt microbial signalling networks that contribute to pathogenicity, will be an important step for improved disease management.
机译:人们流行的网络模型通常可以通过响应有关流行病方法的信息来包括行为修改的影响来进行改进。同样,也有机会将信息流及其影响整合到多种模型的网络模型中的植物病流行中。 (1)对于植物病害的人类管理网络,网络的每个节点都有四个主要组成部分:植物群落,微生物群落,人类信息(在研究人员,推广人员,农民和其他利益相关者之间)以及环境条件,以及他们的互动。节点之间的链接代表了节点之间的移动速率,分为三个部分:植物材料的速率,微生物的速率和信息的速率。网络对于信息流的恢复能力是此类系统的重要目标。博弈论可以提供有关人类代理如何决定如何投入其精力来加强信息网络以及政策如何支持更具弹性的网络的见解。 (2)对于植物内部信号网络,每个节点具有一组可比较的四个主要组成部分:植物信号(通常以植物激素的形式)和发育状态,微生物群落和植物疾病状态,微生物信号(通常在植物体内)。群体感应分子的形式),微环境条件及其相互作用。实际上,在第二个模型中,人类信息被植物信号和微生物信号取代。节点之间的链接包括三个部分:微生物的比率,微生物信号的比率(可能与微生物本身分开移动)以及植物信号的比率。了解如何增强适应性植物信号网络和支持植物生产力的微生物信号网络,以及破坏有助于致病性的微生物信号网络,将是改善疾病管理的重要步骤。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号