首页> 外文期刊>European Journal of Mechanics. A, Solids >An elastoplastic framework for granular materials becoming cohesive through mechanical densification. Part Ⅱ - the formulation of elastoplastic coupling at large strain
【24h】

An elastoplastic framework for granular materials becoming cohesive through mechanical densification. Part Ⅱ - the formulation of elastoplastic coupling at large strain

机译:通过机械致密化使粒状材料粘结的弹塑性框架。第二部分-大应变弹塑性耦合的公式

获取原文
获取原文并翻译 | 示例
           

摘要

The two key phenomena occurring in the process of ceramic powder compaction are the progressive gain in cohesion and the increase of elastic stiffness, both related to the development of plastic deformation. The latter effect is an example of 'elastoplastic coupling', in which the plastic flow affects the elastic properties of the material, and has been so far considered only within the framework of small strain assumption (mainly to describe elastic degradation in rock-like materials), so that it remains completely unexplored for large strain. Therefore, a new finite strain generalization of elastoplastic coupling theory is given to describe the mechanical behaviour of materials evolving from a granular to a dense state. The correct account of elastoplastic coupling and of the specific characteristics of materials evolving from a loose to a dense state (for instance, nonlinear - or linear - dependence of the elastic part of the deformation on the forming pressure in the granular - or dense - state) makes the use of existing large strain formulations awkward, if even possible. Therefore, first, we have resorted to a very general setting allowing general transformations between work-conjugate stress and strain measures; second, we have introduced the multiplicative decomposition of the deformation gradient and, third, employing isotropy and hyperelasticity of elastic response, we have obtained a relation between the Biot stress and its 'total' and 'plastic' work-conjugate strain measure. This is a key result, since it allows an immediate achievement of the rate elastoplastic constitutive equations. Knowing the general form of these equations, all the specific laws governing the behaviour of ceramic powders are finally introduced as generalizations of the small strain counterparts given in Part Ⅰ of this paper.
机译:陶瓷粉末压实过程中发生的两个关键现象是内聚力的逐步增加和弹性刚度的增加,两者都与塑性变形的发展有关。后一种效应是“弹塑性耦合”的一个例子,其中的塑性流动影响材料的弹性,到目前为止,仅在小应变假设的框架内才考虑(主要是描述岩石材料的弹性退化)。 ),因此对于大应变,它仍然是完全未开发的。因此,给出了弹塑性耦合理论的一种新的有限应变广义化,以描述材料从颗粒状态转变为致密状态的力学行为。正确解释了弹塑性耦合以及从松散状态转变为致密状态的材料的特定特征(例如,非线性或线性依赖于变形弹性部分对颗粒状态(或致密状态)的成形压力的影响)即使可能,也会笨拙地使用现有的大型应变公式。因此,首先,我们采用了一种非常通用的设置,允许在共轭应力和应变测量之间进行一般转换。第二,我们引入了变形梯度的乘法分解,第三,利用弹性响应的各向同性和超弹性,我们获得了毕奥特应力与其“总”和“塑性”功共轭应变度量之间的关系。这是一个关键结果,因为它可以立即实现速率弹塑性本构方程。知道了这些方程式的一般形式后,最后介绍了控制陶瓷粉末行为的所有特定定律,作为本文第一部分给出的小应变对应物的概括。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号