首页> 外文期刊>Environmental toxicology and chemistry >Application of the Biotic Ligand Model to Explain Potassium Interaction with Thallium Uptake and Toxicity to Plankton
【24h】

Application of the Biotic Ligand Model to Explain Potassium Interaction with Thallium Uptake and Toxicity to Plankton

机译:生物配体模型在解释钾与with吸收和对浮游生物的毒性相互作用中的应用

获取原文
获取原文并翻译 | 示例
       

摘要

Competitive interaction between T1(I) and K was successfully predicted by the biotic ligand model (BLM) for the microalga Chlorelia sp. (Chlorophyta; University of Toronto Culture Collection strain 522) during 96-h toxicity tests. Because ofrna greater affinity of TI(I) (log K = 7.3-7.4) as compared to K (log K = 5.3-6.3) for biologically sensitive sites, an excess of 40-rnto l60-fold of K is required to suppress T1(I) toxic effects on Chlorelia sp., regardless of [T1(I)] in solution. Similar excess of Krns required to suppress T1(I) toxicity to Synechococcus leopoliensis (Cyanobacteria; University of Texas Culture Collection strain 625) and Brachionu: calyciflorus (Rotifera; strain AB-RIF). The mechanism for the mitigating effect of K on T1(I) toxicity wasrnnvestigated by measuring ~(204)Tl(I) cellular uptake flux and efflux in Chlorelia sp. Potassium shows a competitive effect on T1(I) uDtake fluxes that ceuld be modeled using the BLM-derived stability constants and a Michaelis-Menten relationship. A strong T1 efflux dependent only on the cellular T1 concentration was measured. Although T1 efflux does not explain the effect of K on T1(I) toxicity and uptake, it is responsible for a high turnover of the cellular T1 pool (intracellular half-life = 12-13.5 min). No effect of Na~+ Mg~(2+), or Ca~(2-) was observed on T1~+ uptake, whereas the absence of trace metals (Cu, Co, Mo, Mn, Fe, and Zn) significantly increased Tl uptake and decreased the mitigating effect of K~+. The importance of K~+ in determining the aquatic toxicity of T1~+ underscores the use of ambient K~+ concentration in the establishment of T1 water-quality guidelines and the need to consider K in predicting biogeochemical fates of T1 in the aquatic environment.
机译:通过微藻Chlorelia sp的生物配体模型(BLM)成功预测了T1(I)和K之间的竞争相互作用。 (绿藻;多伦多大学培养物菌株522)在96小时的毒性试验中。由于与生物敏感位点的K(log K = 5.3-6.3)相比,TI(I)(log K = 7.3-7.4)具有更大的亲和力,因此抑制T1需要过量的40-l至160倍的K。 (I)对叶绿藻的毒性作用,与溶液中的[T1(I)]无关。抑制T1(I)对Leopoliechensis(蓝藻菌;德克萨斯大学培养物保藏中心菌株625)和Brachionu:calyciflorus(Rotifera; AB-RIF菌株)抑制T1(I)毒性所需的类似过量Krns。通过测量小球藻中〜(204)Tl(I)的细胞摄取通量和外排,研究了钾对T1(I)毒性的缓解作用机理。钾对T1(I)uDtake通量表现出竞争效应,可以使用BLM衍生的稳定常数和Michaelis-Menten关系建模。测量到仅取决于细胞T1浓度的强T1流出。尽管T1外排不能解释K对T1(I)毒性和摄取的影响,但它负责细胞T1库的高周转(细胞内半衰期= 12-13.5分钟)。没有观察到Na〜+ Mg〜(2+)或Ca〜(2-)对T1〜+吸收的影响,而微量金属(Cu,Co,Mo,Mn,Fe和Zn)的缺乏显着增加。 T1的吸收并降低了钾离子的缓解作用。在确定T1〜+的水生毒性方面,K〜+的重要性强调了在建立T1水质准则时使用环境K〜+浓度,以及在预测T1在水生环境中的生物地球化学命运方面需要考虑K。

著录项

  • 来源
    《Environmental toxicology and chemistry》 |2007年第6期|1139-1145|共7页
  • 作者单位

    Department of Biology/Clarkson Center for the Environment, Clarkson University, Potsdam, New York 13699, USA;

    Department of Biology/Clarkson Center for the Environment, Clarkson University, Potsdam, New York 13699, USA;

    Department of Biology/Clarkson Center for the Environment, Clarkson University, Potsdam, New York 13699, USA;

    Department of Biology/Clarkson Center for the Environment, Clarkson University, Potsdam, New York 13699, USA;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);美国《化学文摘》(CA);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    algae; biotic ligand model; cyanobacteria; growth rate; water-quality guidelines;

    机译:藻类生物配体模型蓝细菌增长率;水质准则;
  • 入库时间 2022-08-17 13:35:35

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号