...
首页> 外文期刊>Environmental Science & Technology >Nonionic Surfactant-Enhanced Solubilization and Recovery of Organic Contaminants from within Cationic Surfactant-Enhanced Sprbent Zones. 2. Numerical Simulations
【24h】

Nonionic Surfactant-Enhanced Solubilization and Recovery of Organic Contaminants from within Cationic Surfactant-Enhanced Sprbent Zones. 2. Numerical Simulations

机译:非离子表面活性剂增强的增溶作用和从阳离子表面活性剂增强的吸收区内回收有机污染物。 2.数值模拟

获取原文
获取原文并翻译 | 示例
           

摘要

A mathematical model is developed to investigate the simultaneous aqueous phase transport and partitioning behavior of a nonionic surfactant and a representative hydrophobic organic contaminant (HOC) in flow-through aquifer material-water systems. Unmodified aquifer material and aquifer material treated with a cationic surfactant are considered. Nonionic surfactant sorption is represented using the equilibrium, nonlinear two-term Langmuir equation and the kinetic, nonlinear Langmuir equation. HOC sorption and solubilization is represented by an expression relating HOC partitioning between the bulk solid phase and the bulk aqueous phase containing monomer and micellar pseudophases. The model is implemented in a one-dimensional finite difference numerical model that utilizes Picard iteration to accommodate nonlinearities. Column effluent breakthrough data are used to evaluate the modeling approach. Experimentally determined batch data provided most of the model input parameters. Model simulations show good agreement with measured results when mass transfer limitations for the nonionic surfactant are considered. The model is employed to examine the potential effects of influent nonionic surfactant concentration and flushing rate on the removal of HOCs from within a cationic surfactant-enhanced sorbent zone. The analysis revealed that increasing nonionic surfactant influent concentrations decreased the volume of nonionic surfactant required to recover an HOC pulse and that HOC removal increased with increasing nonionic surfactant flushing rate. It is likely, however, that a maximum flow rate exists above which mass transfer limitations in HOC aqueous-solid phase partitioning will occur.
机译:建立了数学模型以研究非离子表面活性剂和代表性的疏水性有机污染物(HOC)在流通性含水层材料-水系统中的同时水相传输和分配行为。考虑了未改性的含水层材料和用阳离子表面活性剂处理的含水层材料。非离子表面活性剂的吸附用平衡的非线性二项Langmuir方程和动力学的非线性Langmuir方程表示。 HOC的吸附和增溶用与HOC在包含单体和胶束假相的本体固相和本体水相之间分配有关的表达来表示。该模型以一维有限差分数值模型实现,该模型利用Picard迭代来适应非线性。色谱柱流出物突破数据用于评估建模方法。实验确定的批次数据提供了大多数模型输入参数。当考虑到非离子表面活性剂的传质限制时,模型仿真表明与测量结果有很好的一致性。该模型用于检查进水非离子表面活性剂浓度和冲洗速率对从阳离子表面活性剂增强的吸附剂区内去除HOC的潜在影响。分析表明,增加非离子表面活性剂的进水浓度会降低恢复HOC脉冲所需的非离子表面活性剂的体积,并且随非离子表面活性剂冲洗速度的增加,HOC的去除量也会增加。但是,很可能存在最大流速,超过此流速将发生HOC水固相分配中的传质限制。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号