首页> 外文期刊>Environmental Science & Technology >Evaluation of the Effects of Porous Media Structure on Mixing-Controlled Reactions Using Pore-Scale Modeling and Micromodel Experiments
【24h】

Evaluation of the Effects of Porous Media Structure on Mixing-Controlled Reactions Using Pore-Scale Modeling and Micromodel Experiments

机译:孔隙模型和微模型实验评估多孔介质结构对混合控制反应的影响

获取原文
获取原文并翻译 | 示例
       

摘要

The objectives of this work were to determine if a pore-scale model could accurately capture the physical and chemical processes that control transverse mixing and reaction in microfluidic pore structures (i.e., micromodels), and to directly evaluate the effects of porous media geometry on a transverse mixing-limited chemical reaction. We directly compare pore-scale numerical simulations using a lattice-Boltzmann finite volume model (LB-FVM) with micromodel experiments using identical pore structures and flow rates, and we examine the effects of grain size, grain orientation, and intraparticle porosity upon the extent of a fast bimolecular reaction. For both the micromodel experiments and LB-FVM simulations, two reactive substrates are introduced into a network of pores via two separate and parallel fluid streams. The substrates mix within the porous media transverse to flow and undergo instantaneous reaction. Results indicate that (ⅰ) the LB-FVM simulations accurately captured the physical and chemical process in the micromodel experiments, (ⅱ) grain size alone is not sufficient to quantify mixing at the pore scale, (ⅲ) interfacial contact area between reactive species plumes is a controlling factor for mixing and extent of chemical reaction, (ⅳ) at steady state, mixing and chemical reaction can occur within aggregates due to interconnected intra-aggregate porosity, (ⅴ) grain orientation significantly affects mixing and extent of reaction, and (ⅵ) flow focusing enhances transverse mixing by bringing stream lines which were initially distal into close proximity thereby enhancing transverse concentration gradients. This study suggests that subcontinuum effects can play an important role in the overall extent of mixing and reaction in groundwater, and hence may need to be considered when evaluating reactive transport.
机译:这项工作的目的是确定孔尺度模型是否可以准确地捕获控制微流体孔结构(即微模型)中的横向混合和反应的物理和化学过程,并直接评估多孔介质几何形状对模型的影响。横向混合限制化学反应。我们将使用格-玻尔兹曼有限体积模型(LB-FVM)的孔尺度数值模拟与使用相同孔结构和流速的微模型实验直接进行比较,并研究晶粒度,晶粒取向和颗粒内孔隙率对程度的影响快速的双分子反应。对于微模型实验和LB-FVM模拟,两种反应性底物通过两条独立且平行的流体流被引入孔网络。基质在多孔介质中横向混合并流动,并发生瞬时反应。结果表明(ⅰ)LB-FVM模拟准确地捕获了微模型实验中的物理和化学过程,(ⅱ)仅晶粒大小不足以量化孔尺度上的混合,(ⅲ)反应物种羽之间的界面接触面积是混合和化学反应程度的控制因素,(ⅳ)在稳定状态下,由于内部聚集体内部孔隙相互关联,混合和化学反应会在聚集体内发生,(ⅴ)晶粒取向会显着影响混合和反应程度,并且( ⅵ)流动聚焦通过使最初位于远端的流线紧密靠近而增强了横向混合,从而增强了横向浓度梯度。这项研究表明,亚连续谱的影响可以在地下水的混合和反应的整体范围内发挥重要作用,因此在评估反应性迁移时可能需要考虑这一点。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号