首页> 外文期刊>Environmental Science & Technology >Zinc Oxide Nanoparticles Cause Inhibition of Microbial Denitrification by Affecting Transcriptional Regulation and Enzyme Activity
【24h】

Zinc Oxide Nanoparticles Cause Inhibition of Microbial Denitrification by Affecting Transcriptional Regulation and Enzyme Activity

机译:氧化锌纳米粒子通过影响转录调控和酶活性,导致抑制微生物反硝化作用

获取原文
获取原文并翻译 | 示例
       

摘要

Over the past few decades, human activities have accelerated the rates and extents of water eutrophication and global warming through increasing delivery of biologically available nitrogen such as nitrate and large emissions of anthropogenic greenhouse gases. In particular, nitrous oxide (N_2O) is one of the most important greenhouse gases, because it has a 300-fold higher global warming potential than carbon dioxide. Microbial denitrification is a major pathway responsible for nitrate removal, and also a dominant source of N_2O emissions from terrestrial or aquatic environments. However, whether the release of zinc oxide nanoparticles (ZnO NPs) into the environment affects microbial denitrification is largely unknown. Here we show that the presence of ZnO NPs lead to great increases in nitrate delivery (9.8-fold higher) and N_2O emissions (350- and 174-fold higher in the gas and liquid phases, respectively). Our data further reveal that ZnO NPs significantly change the transcriptional regulations of glycolysis and polyhydroxybutyrate synthesis, which causes the decrease in reducing powers available for the reduction of nitrate and N_2O. Moreover, ZnO NPs substantially inhibit the gene expressions and catalytic activities of key denitrifying enzymes. These negative effects of ZnO NPs on microbial denitrification finally cause lower nitrate removal and higher N_2O emissions, which is likely to exacerbate water eutrophication and global wanning.
机译:在过去的几十年中,人类活动通过增加生物可利用氮(例如硝酸盐)的排放和大量人为温室气体的排放,加速了水富营养化和全球变暖的速度和程度。尤其是,一氧化二氮(N_2O)是最重要的温室气体之一,因为它的全球变暖潜力比二氧化碳高300倍。微生物反硝化是负责硝酸盐去除的主要途径,也是陆地或水生环境中N_2O排放的主要来源。然而,很大程度上未知氧化锌纳米颗粒(ZnO NPs)释放到环境中会影响微生物的反硝化作用。在这里,我们表明ZnO NPs的存在导致硝酸盐输送量(高9.8倍)和N_2O排放量(气相和液相分别高350倍和174倍)大大增加。我们的数据进一步揭示了ZnO NPs显着改变了糖酵解和多羟基丁酸酯合成的转录规律,这导致可用于还原硝酸盐和N_2O的还原能力降低。此外,ZnO NPs实质上抑制了关键反硝化酶的基因表达和催化活性。 ZnO NPs对微生物反硝化的这些负面影响最终导致硝酸盐去除率降低和N_2O排放升高,这可能加剧水体富营养化和全球范围的减少。

著录项

  • 来源
    《Environmental Science & Technology》 |2014年第23期|13800-13807|共8页
  • 作者单位

    State Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China;

    State Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China;

    State Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China;

    State Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China;

    State Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China;

    State Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China;

    State Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);美国《化学文摘》(CA);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

  • 入库时间 2022-08-17 14:01:31

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号