...
首页> 外文期刊>Environmental Science & Technology >Enhanced Bioavailability and Microbial Biodegradation of Polystyrene in an Enrichment Derived from the Gut Microbiome of Tenebrio molitor (Mealworm Larvae)
【24h】

Enhanced Bioavailability and Microbial Biodegradation of Polystyrene in an Enrichment Derived from the Gut Microbiome of Tenebrio molitor (Mealworm Larvae)

机译:增强富苯乙烯的增强生物利用度和微生物生物降解衍生自Tenebrio Molitor(粉虫幼虫)的肠道微生物组

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

As the global threat of plastic pollution has grown in scale and urgency, so have efforts to find sustainable and efficient solutions. Research conducted over the past few years has identified gut environments within insect larvae, including Tenebrio molitor (yellow mealworms), as microenvironments uniquely suited to rapid plastic biodegradation. However, there is currently limited understanding of how the insect host and its gut microbiome collaborate to create an environment conducive to plastic biodegradation. In this work, we provide evidence that T. molitor secretes one or more emulsifying factor(s) (30-100 kDa) that mediate plastic bioavailability. We also demonstrate that the insect gut microbiome secretes factor(s) (<30 kDa) that enhance respiration on polystyrene (PS). We apply these insights to culture PS-fed gut microbiome enrichments, with elevated rates of respiration and degradation compared to the unenriched gut microbiome. Within the enrichment, we identified eight unique gut microorganisms associated with PS biodegradation including Citrobacter freundii, Serratia marcescens, and Klebsiella aerogenes. Our results demonstrate that both the mealworm itself and its gut microbiome contribute to accelerated plastic biodegradation. This work provides new insights into insect-mediated mechanisms of plastic degradation and potential strategies for cultivation of plastic-degrading microorganisms in future investigations and scale-up.
机译:随着塑料污染的全球威胁,规模和紧迫性增长,因此可以努力寻找可持续和有效的解决方案。在过去几年中进行的研究已经确定了昆虫幼虫中的肠道环境,包括Tenebrio Molitor(黄色粉虫),因为微环境独特地适用于快速塑料生物降解。然而,目前有限地了解昆虫宿主和其肠道微生物组如何合作以创造有利于塑料生物降解的环境。在这项工作中,我们提供了证据表明,T.olitor分泌一个或多个乳化因子(30-100kDa),介导塑料生物利用度。我们还证明了昆虫肠道微生物组分泌因子(<30kDa),其增强聚苯乙烯(PS)呼吸。与未切入的肠道微生物组相比,我们对培养PS-Fed肠道微生物微生物富集的浓缩和降解率提高了兴趣。在富集内,我们确定了与PS生物降解相关的八种独特的肠道微生物,包括搭扣毛刺Freundii,Serratia Marcescens和Klebsiella Ailogenes。我们的结果表明,粉虫本身和其肠道微生物组有助于加速塑料生物降解。这项工作为昆虫介导的塑性降解机制和潜在策略在未来的调查和扩大的塑性降解微生物培养的潜在策略中提供了新的见解。

著录项

  • 来源
    《Environmental Science & Technology》 |2021年第3期|2027-2036|共10页
  • 作者单位

    Department of Civil and Environmental Engineering Stanford University Stanford California 94305 United States;

    Department of Bioengineering Stanford University Stanford California 94305 United States;

    Department of Bioengineering Stanford University Stanford California 94305 United States;

    Department of Civil and Environmental Engineering Stanford University Stanford California 94305 United States;

    Department of Civil and Environmental Engineering Stanford University Stanford California 94305 United States;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);美国《化学文摘》(CA);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号