首页> 外文期刊>Environmental Science & Technology >Systematic Exploration of Efficient Strategies to Manage Solid Waste in U.S. Municipalities: Perspectives from the Solid Waste Optimization Life-Cycle Framework (SWOLF)
【24h】

Systematic Exploration of Efficient Strategies to Manage Solid Waste in U.S. Municipalities: Perspectives from the Solid Waste Optimization Life-Cycle Framework (SWOLF)

机译:系统地探索美国城市管理固体废物的有效策略:来自固体废物优化生命周期框架(SWOLF)的观点

获取原文
获取原文并翻译 | 示例
       

摘要

Solid waste management (SWM) systems must proactively adapt to changing policy requirements, waste composition, and an evolving energy system to sustainably manage future solid waste. This study represents the first application of an optimizable dynamic life-cycle assessment framework capable of considering these future changes. The framework was used to draw insights by analyzing the SWM system of a hypothetical suburban U.S. city of 100 000 people over 30 years while considering changes to population, waste generation, and energy mix and costs. The SWM system included 3 waste generation sectors, 30 types of waste materials, and 9 processes for waste separation, treatment, and disposal A business-as-usual scenario (BAU) was compared to three optimization scenarios that (1) minimized cost (Min Cost), (2) maximized diversion (Max Diversion), and (3) minimized greenhouse gas (GHG) emissions (Min GHG) from the system. The Min Cost scenario saved $7.2 million (12%) and reduced GHG emissions (3%) relative to the BAU scenario. Compared to the Max Diversion scenario, the Min GHG scenario cost approximately 27% less and more than doubled the net reduction in GHG emissions. The results illustrate how the timed-deployment of technologies in response to changes in waste composition and the energy system results in more efficient SWM system performance compared to what is possible from static analyses.
机译:固体废物管理(SWM)系统必须主动适应不断变化的政策要求,废物成分以及不断发展的能源系统,以可持续地管理未来的固体废物。这项研究代表了能够考虑这些未来变化的可优化动态生命周期评估框架的首次应用。该框架通过分析一个假设的美国郊区郊区人口超过30年的10万人口城市的SWM系统,同时考虑人口,废物产生以及能源结构和成本的变化,从而得出见解。 SWM系统包括3个废物产生部门,30种废物材料以及9种废物分离,处理和处置过程。将常规业务情景(BAU)与以下三种优化情景进行了比较:(1)最小化成本(最低成本),(2)最大限度地提高系统的分流(Max Diversion)和(3)减少系统中的温室气体(GHG)排放量(Min GHG)。与BAU方案相比,“最低成本”方案节省了720万美元(12%),减少了温室气体排放(3%)。与“最大转移”方案相比,“最小温室气体”方案的成本降低了约27%,是净减少温室气体排放量的两倍以上。结果表明,与静态分析相比,响应废物成分和能源系统变化而进行的技术定时部署如何提高SWM系统的性能。

著录项

  • 来源
    《Environmental Science & Technology》 |2014年第7期|3625-3631|共7页
  • 作者单位

    North Carolina State University, Department of Civil, Construction, and Environmental Engineering, Campus Box 7908, Raleigh, North Carolina 27695-7908, United States;

    North Carolina State University, Department of Civil, Construction, and Environmental Engineering, Campus Box 7908, Raleigh, North Carolina 27695-7908, United States;

    North Carolina State University, Department of Civil, Construction, and Environmental Engineering, Campus Box 7908, Raleigh, North Carolina 27695-7908, United States;

    North Carolina State University, Department of Civil, Construction, and Environmental Engineering, Campus Box 7908, Raleigh, North Carolina 27695-7908, United States;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);美国《化学文摘》(CA);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

  • 入库时间 2022-08-17 14:00:56

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号