首页> 外文期刊>Environmental Science & Technology >Mechanism and Mitigation of the Decomposition of an Oxorhenium Complex-Based Heterogeneous Catalyst for Perchlorate Reduction in Water
【24h】

Mechanism and Mitigation of the Decomposition of an Oxorhenium Complex-Based Heterogeneous Catalyst for Perchlorate Reduction in Water

机译:氧杂Complex基异质催化剂在水中高氯酸盐还原反应中的分解机理及减缓作用

获取原文
获取原文并翻译 | 示例
       

摘要

A biomimetic heterogeneous catalyst combining palladium nanoparticles and an organic ligand-coordinated oxorhenium complex on activated carbon, Re(hoz)_2-Pd/C, was previously developed and shown to reduce aqueous perchlorate (ClO_4~-) with H_2 at a rate ~100 times faster than the first generation ReO_x-Pd/C catalyst prepared from perrhenate (ReO_4~-). However, the immobilized Re(hoz)_2 complex was shown to partially decompose and leach into water as ReO_4~-, leading to an irreversible loss of catalytic activity. In this work, the stability of the immobilized Re(hoz)_2 complex is shown to depend on kinetic competition between three processes: (1) Re~Ⅴ(hoz)_2 oxidation by ClO_4~- and its reduction intermediates ClO_X~-, (2) Re~Ⅶ(hoz)_2 reduction by Pd-activated hydrogen, and (3) hydrolytic Re~Ⅶ(hoz)_2 decomposition. When Re~Ⅴ(hoz)_2 oxidation is faster than Re~Ⅶ(hoz)_2 reduction, the Re~Ⅶ (hoz)_2 concentration builds up and leads to hydrolytic decomposition to ReO_4~- and free hoz ligand. Rapid Re~Ⅴ(hoz)_2 oxidation is mainly promoted by highly reactive ClO_X~- formed from the reduction of ClO_4~-. To mitigate Re(hoz)_2 decomposition and preserve catalytic activity, ruthenium (Ru) and rhodium (Rh) were evaluated as alternative H_2 activators to Pd. Rh showed superior activity for reducing the ClO_3~- intermediate to Cl~-, thereby preventing ClO_x~- buildup and lowering Re complex decomposition in the Re(hoz)_2-Rh/C catalyst. In contrast, Ru showed the lowest ClO_3~- reduction activity and resulted in the most Re(hoz)_2 decomposition among the Re(hoz)_2-M/C catalysts. This work highlights the importance of using mechanistic insights from kinetic and spectroscopic tests to rationally design water treatment catalysts for enhanced performance and stability.
机译:先前已开发出了一种仿生多相催化剂,其在活性炭上结合了钯纳米颗粒和有机配体配位的氧化or络合物Re(hoz)_2-Pd / C,并显示出能以〜100的速率还原含H_2的高氯酸盐(ClO_4〜-)。比高per酸盐(ReO_4〜-)制备的第一代ReO_x-Pd / C催化剂快10倍。然而,固定化的Re(hoz)_2络合物显示出部分分解并以ReO_4〜-的形式浸入水中,导致不可逆的催化活性损失。这项工作表明固定化的Re(hoz)_2配合物的稳定性取决于三个过程之间的动力学竞争:(1)Re〜Ⅴ(hoz)_2被ClO_4〜-及其还原中间体ClO_X〜-氧化,( 2)通过Pd活化的氢还原Re〜Ⅶ(hoz)_2,和(3)水解Re〜Ⅶ(hoz)_2分解。当Re〜Ⅴ(hoz)_2的氧化速度快于Re〜Ⅶ(hoz)_2的还原速度时,Re〜Ⅶ(hoz)_2的浓度增加,导致水解分解为ReO_4〜-和游离的hoz配体。快速的Re〜Ⅴ(hoz)_2氧化主要是由ClO_4〜-还原形成的高反应性ClO_X〜-促进的。为了减轻Re(hoz)_2分解并保持催化活性,评估了钌(Ru)和铑(Rh)作为Pd的替代H_2活化剂。 Rh显示出优异的活性,可将ClO_3〜-中间物还原为Cl〜-,从而防止ClO_x〜-的堆积并降低Re(hoz)_2-Rh / C催化剂中Re络合物的分解。相反,Ru显示出最低的ClO_3〜-还原活性,并导致Re(hoz)_2-M / C催化剂中的Re(hoz)_2分解最多。这项工作强调了利用动力学和光谱测试中的机械原理来合理设计水处理催化剂以提高性能和稳定性的重要性。

著录项

  • 来源
    《Environmental Science & Technology》 |2015年第21期|12932-12940|共9页
  • 作者单位

    Department of Civil and Environmental Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States,Department of Civil and Environmental Engineering, Colorado School of Mines, Golden, Colorado 80401, United States;

    Department of Civil and Environmental Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States,Department of Earth and Environmental Engineering, Columbia University, New York, NY 10027;

    Department of Civil and Environmental Engineering, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin 53211, United States;

    Department of Civil and Environmental Engineering, Colorado School of Mines, Golden, Colorado 80401, United States;

    Department of Civil, Architectural, and Environmental Engineering, University of Texas at Austin, Austin, Texas 78712, United States;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);美国《化学文摘》(CA);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

  • 入库时间 2022-08-17 13:59:55

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号