首页> 外文期刊>Environmental Science & Technology >Organic Matter Remineralization Predominates Phosphorus Cycling in the Mid-Bay Sediments in the Chesapeake Bay
【24h】

Organic Matter Remineralization Predominates Phosphorus Cycling in the Mid-Bay Sediments in the Chesapeake Bay

机译:切萨皮克湾中海湾沉积物中的有机质再矿化作用主要是磷循环。

获取原文
获取原文并翻译 | 示例
       

摘要

Chesapeake Bay, the largest and most productive estuary in the U.S., suffers from varying degrees of water quality issues fueled by both point and nonpoint nutrient sources. Restoration of the Bay is complicated by the multitude of nutrient sources, their variable inputs, and complex interaction between imported and regenerated nutrients. These complexities not only restrict formulation of effective restoration plans but also open up debates on accountability issues with nutrient loading. A detailed understanding of sediment phosphorus (P) dynamics provides information useful in identifying the exchange of dissolved constituents across the sediment-water interface as well as helps to better constrain the mechanisms and processes controlling the coupling between sediments and the overlying waters. Here we used phosphate oxygen isotope ratios (δ~(18)O_P) in concert with sediment chemistry, X-ray diffraction, and Moessbauer spectroscopy on sediments retrieved from an organic rich, sulfidtc site in the mesohaline portion of the mid-Bay to identify sources and pathway of sedimentary P cycling and to infer potential feedbacks on bottom water hypoxia and surface water eutrophicatJon. Authigenic phosphate isotope data suggest that the regeneration of inorganic P from organic matter degradation (remineralization) is the predominant, if not sole, pathway for authigenic P precipitation in the mid-Bay sediments. This indicates that the excess inorganic P generated by remineralization should have overwhelmed any pore water and/or bottom water because only a fraction of this precipitates as authigenic P. This is the first research that identifies the predominance of remineralization pathway and recycling of P within the Chesapeake Bay. Therefore, these results have significant implications on the current understanding of sediment P cycling and P exchange across the sediment-water interface in the Bay, particularly in terms of the sources and pathways of P that sustain hypoxia and may potentially support phytoplankton growth in the surface water.
机译:切萨皮克湾(Chesapeake Bay)是美国最大,生产力最高的河口,其水质问题受点和非点营养源的不同程度影响。众多的养分来源,其可变的投入以及进口养分和再生养分之间的复杂相互作用,使海湾的恢复变得复杂。这些复杂性不仅限制了有效的恢复计划的制定,而且还引发了有关养分装载问题的讨论。对沉积物磷(P)动力学的详细了解提供了有用的信息,可用于识别溶解物在沉积物-水界面之间的交换,并有助于更好地限制控制沉积物与上覆水之间耦合的机制和过程。在这里,我们将磷酸盐氧同位素比率(δ〜(18)O_P)与沉积物化学,X射线衍射和Moessbauer光谱相结合,对从中海湾中卤代甲烷部分的富含有机物的硫化物位点中回收的沉积物进行鉴定沉积物磷循环的来源和途径,并推断出对底水缺氧和地表水富营养化的潜在反馈。自生磷酸盐同位素数据表明,来自有机物降解(再矿化)的无机P再生是中海湾沉积物中自生P沉淀的主要途径,即使不是唯一的途径。这表明由再矿化产生的过量无机P应该淹没了任何孔隙水和/或底部水,因为只有一部分沉淀物是自生P。这是第一个确定再矿化途径和P在矿床中再循环的优势的研究。切萨皮克湾。因此,这些结果对目前对海湾中沉积物磷循环和跨沉积物-水界面的磷交换的理解具有重要意义,特别是在维持低氧并可能支持地表浮游植物生长的磷的来源和途径方面水。

著录项

  • 来源
    《Environmental Science & Technology》 |2015年第10期|5887-5896|共10页
  • 作者单位

    Department of Plant and Soil Sciences, University of Delaware, Newark, Delaware 19716, United States;

    EnvironmentaI Molecular Science Laboratory, Pacific Northwest National Laboratory, Richland, Washington 99354, United States;

    Department of Ocean, Earth, and Atmospheric Sciences, Old Dominion University, Norfolk, Virginia 23529, United States;

    EnvironmentaI Molecular Science Laboratory, Pacific Northwest National Laboratory, Richland, Washington 99354, United States;

    Department of Plant and Soil Sciences, University of Delaware, Newark, Delaware 19716, United States;

    Department of Plant and Soil Sciences, University of Delaware, Newark, Delaware 19716, United States;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);美国《化学文摘》(CA);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

  • 入库时间 2022-08-17 13:59:41

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号