首页> 外文期刊>Environmental Science & Technology >Optical Sensor Nanoparticles in Artificial Sediments-A New Tool To Visualize O_2 Dynamics around the Rhizome and Roots of Seagrasses
【24h】

Optical Sensor Nanoparticles in Artificial Sediments-A New Tool To Visualize O_2 Dynamics around the Rhizome and Roots of Seagrasses

机译:人工沉积物中的光学传感器纳米颗粒-一种可视化海草根茎和根周围O_2动态的新工具

获取原文
获取原文并翻译 | 示例
       

摘要

Seagrass communities provide important ecosystems services in coastal environments but are threatened by anthropogenic impacts. Especially the ability of seagrasses to aerate their below-ground tissue and immediate rhizosphere to prevent sulfide intrusion from the surrounding sediment is critical for their resilience to environmental disturbance. There is a need for chemical techniques that can map the O_2 distribution and dynamics in the seagrass rhizosphere upon environmental changes and thereby identify critical stress thresholds of e.g. water flow, turbidity, and O_2 conditions in the water phase. In a novel experimental approach, we incorporated optical O_2 sensor nanoparticles into a transparent artificial sediment matrix consisting of pH-buffered deoxy-genated sulfidic agar. Seagrass growth and photosynthesis was not inhibited in the experimental setup when the below-ground biomass was immobilized in the artificial sulfidic sediment with nanoparticles and showed root growth rates (~5 mm day~(-1)) and photosynthetic quantum yields (~0.7) comparable to healthy seagrasses in their natural habitat. We mapped the real-time below ground O_2 distribution and dynamics in the whole seagrass rhizosphere during experimental manipulation of light exposure and O_2 content in the overlaying water. Those manipulations showed that oxygen release from the belowground tissue is much higher in light as compared to darkness and that water column hypoxia leads to diminished oxygen levels around the rhizome/roots. Oxygen release was visualized and analyzed on a whole rhizosphere level, which is a substantial improvement to existing methods relying on point measurements with O_2 microsensors or partial mapping of the rhizosphere in close contact with a planar O_2 optode. The combined use of optical nanoparticle-based sensors with artificial sediments enables imaging of chemical microenvironments in the rhizosphere of aquatic plants at high spatiotemporal resolution with a relatively simple experimental setup and thus represents a significant methodological advancement for studies of environmental impacts on aquatic plant ecophysiology.
机译:海草社区在沿海环境中提供重要的生态系统服务,但受到人为影响的威胁。尤其是海草对地下组织和直接根际充气的能力,以防止硫化物从周围的沉积物中侵入,这对于它们对环境干扰的抵抗力至关重要。需要化学技术,其可根据环境变化来绘制海草根际中的O_2分布和动力学,并由此确定临界应力阈值,例如:水相中的水流量,浊度和O_2条件。在一种新颖的实验方法中,我们将光学O_2传感器纳米粒子并入由pH缓冲的脱氧硫化琼脂组成的透明人工沉积基质中。当地下生物量被固定在带有纳米颗粒的人工硫化物沉积物中时,海草的生长和光合作用没有受到抑制,并显示了根的生长速率(〜5 mm day〜(-1))和光合量子产率(〜0.7)。在其自然栖息地中可媲美健康的海草。我们在实验控制覆盖层水中的光照和O_2含量的过程中,绘制了整个海草根际中地下O_2的实时分布和动态图。这些操作表明,与黑暗相比,从地下组织释放的氧气在光照下要高得多,并且水柱缺氧会导致根茎/根周围的氧气含量降低。可以在整个根际水平上观察和分析氧气的释放,这是对现有方法的重大改进,该方法依赖于使用O_2微传感器进行点测量或与平面O_2光电二极管紧密接触的根际局部映射。结合使用基于光学纳米粒子的传感器和人工沉积物,可以以相对较高的实验设置以较高的时空分辨率对水生植物根际中的化学微环境进行成像,因此代表了研究环境对水生植物生态生理学影响的重要方法学进展。

著录项

  • 来源
    《Environmental Science & Technology》 |2015年第4期|2286-2292|共7页
  • 作者单位

    Marine Biological Section, Department of Biology, University of Copenhagen, Helsingor DK-3000, Denmark;

    Plant Functional Biology and Climate Change Cluster, University of Technology Sydney, Ultimo, New South Wales 2007, Australia;

    Plant Functional Biology and Climate Change Cluster, University of Technology Sydney, Ultimo, New South Wales 2007, Australia;

    Marine Biological Section, Department of Biology, University of Copenhagen, Helsingor DK-3000, Denmark,Plant Functional Biology and Climate Change Cluster, University of Technology Sydney, Ultimo, New South Wales 2007, Australia,Singapore Centre on Environmental Life Sciences Engineering, School of Biological Sciences, Nanyang Technological University, Singapore 639798, Singapore;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);美国《化学文摘》(CA);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

  • 入库时间 2022-08-17 13:59:33

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号