首页> 外文期刊>Environmental Science & Technology >Natural Organic Matter Concentration Impacts the Interaction of Functionalized Diamond Nanoparticles with Model and Actual Bacterial Membranes
【24h】

Natural Organic Matter Concentration Impacts the Interaction of Functionalized Diamond Nanoparticles with Model and Actual Bacterial Membranes

机译:天然有机物浓度影响功能化的金刚石纳米粒子与模型和实际细菌膜的相互作用。

获取原文
获取原文并翻译 | 示例
       

摘要

Changes to nanoparticle surface charge, colloidal stability, and hydro-dynamic properties induced by interaction with natural organic matter (NOM) warrant consideration in assessing the potential for these materials to adversely impact organisms in the environment. Here, we show that acquisition of a coating, or "corona", of NOM alters the hydrodynamic and electrokinetic properties of diamond nanoparticles (DNPs) functionalized with the polycation poly(allyiamine HCl) in a manner that depends on the NOM-to-DNP concentration ratio. The NOM-induced changes to DNP properties alter subsequent interactions with model biological membranes and the Gram-negative bacterium Shewanella oneidensis MR-1. Suwannee River NOM induces changes to DNP hydrodynamic diameter and apparent ξ-potential in a concentration-dependent manner. At low NOM-to-DNP ratios, DNPs aggregate to a limited extent but retain a positive ξ-potential apparently due to nonuniform adsorption of NOM molecules leading to attractive electrostatic interactions between oppositely charged regions on adjacent DNP surfaces. Diamond nanoparticles at low NOM-to-DNP ratios attach to model membranes to a larger extent than in the absence of NOM (including those incorporating lipopolysaccharide, a major bacterial outer membrane component) and induce a comparable degree of membrane damage and toxicity to S. oneidensis. At higher NOM-to-DNP ratios, DNP charge is reversed, and DNP aggregates remain stable in suspension. This charge reversal eliminates DNP attachment to model membranes containing the highest LPS contents studied due to electrostatic repulsion and abolishes membrane damage to S. oneidensis. Our results demonstrate that the effects of NOM coronas on nanoparticle properties and interactions with biological surfaces can depend on the relative amounts of NOM and nanoparticles.
机译:与天然有机物(NOM)相互作用引起的纳米颗粒表面电荷,胶体稳定性和流体力学性质的变化,在评估这些材料对环境中的生物产生不利影响的潜力时,应考虑在内。在这里,我们表明获得NOM涂层或“电晕”会改变依赖于NOM-to-DNP的方式被聚阳离子聚(烯丙胺盐酸盐)官能化的金刚石纳米颗粒(DNP)的流体动力学和电动特性。浓度比。 NOM诱导的DNP特性变化改变了随后与模型生物膜和革兰氏阴性菌Shewanella oneidensis MR-1的相互作用。 Suwannee河NOM以浓度依赖的方式引起DNP流体动力学直径和表观ξ势的变化。在低NOM与DNP比率下,DNP聚集程度有限,但显然由于NOM分子吸附不均匀而导致正ξ电位,导致相邻DNP表面上带相反电荷的区域之间有吸引力的静电相互作用。与不存在NOM时(包括掺有脂多糖,主要细菌外膜成分的那些)相比,低NOM / DNP比的钻石纳米颗粒附着模型膜的程度更大,并且可诱导相当程度的膜破坏和对S的毒性。 oneidensis。在较高的NOM与DNP比率下,DNP电荷会反转,并且DNP聚集体在悬浮液中保持稳定。这种电荷逆转消除了DNP对模型膜的附着,该模型膜由于静电排斥而被研究含有最高的LPS含量,并且消除了膜对拟南芥的损害。我们的结果表明,NOM电晕对纳米颗粒性质和与生物表面相互作用的影响可能取决于NOM和纳米颗粒的相对量。

著录项

  • 来源
    《Environmental Science & Technology》 |2017年第19期|11075-11084|共10页
  • 作者单位

    Department of Chemistry, University of Wisconsin, Madison, Wisconsin 53706, United States;

    Chemistry Department, Augsburg University, Minneapolis, Minnesota 55454, United States;

    Chemistry Department, Augsburg University, Minneapolis, Minnesota 55454, United States;

    Department of Chemistry, University of Wisconsin, Madison, Wisconsin 53706, United States;

    Chemistry Department, Augsburg University, Minneapolis, Minnesota 55454, United States;

    Department of Chemistry, University of Wisconsin, Madison, Wisconsin 53706, United States;

    Department of Chemistry, University of Wisconsin, Madison, Wisconsin 53706, United States,Department of Soil Science, University of Wisconsin, Madison, Wisconsin 53706, United States,Department of Civil and Environmental Engineering, University of Wisconsin, Madison, Wisconsin 53706, United States;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);美国《化学文摘》(CA);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

  • 入库时间 2022-08-17 13:57:56

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号