首页> 外文期刊>Environmental Science & Technology >Modeling Biphasic Environmental Decay of Pathogens and Implications for Risk Analysis
【24h】

Modeling Biphasic Environmental Decay of Pathogens and Implications for Risk Analysis

机译:病原体的两相环境衰减建模及其对风险分析的启示

获取原文
获取原文并翻译 | 示例
       

摘要

As the appreciation for the importance of the environment in infectious disease transmission has grown, so too has interest in pathogen fate and transport. Fate has been traditionally described by simple exponential decay, but there is increasing recognition that some pathogens demonstrate a biphasic pattern of decay-fast followed slow. While many have attributed this behavior to population heterogeneity, we demonstrate that biphasic dynamics can arise through a number of plausible mechanisms. We examine the iđentifi-ability of a general model encompassing three such mechanisms: population heterogeneity, hardening off, and the existence of viable-but-not-culturable states. Although the models are not fully identifiable from longitudinal sampling studies of pathogen concentrations, we use a differential algebra approach to determine identifiable parameter combinations. Through case studies using Cryptosporidium and Escherichia coli, we show that failure to consider biphasic pathogen dynamics can lead to substantial under- or overestimation of disease risks and pathogen concentrations, depending on the context. More reliable models for environmental hazards and human health risks are possible with an improved understanding of the conditions in which biphasic die-off is expected Understanding the mechanisms of pathogen decay will ultimately enhance our control efforts to mitigate exposure to environmental contamination.
机译:随着人们越来越意识到环境在传染病传播中的重要性,对病原体命运和运输的兴趣也日益增加。传统上,命运是通过简单的指数衰减描述的,但人们越来越认识到,某些病原体表现出快速衰减后缓慢衰减的两相模式。尽管许多人将这种行为归因于种群异质性,但我们证明了双相动力学可以通过许多合理的机制产生。我们研究了包含以下三种机制的通用模型的可识别性:种群异质性,硬化以及存在可生存但不可培养的状态。尽管无法通过对病原体浓度的纵向采样研究完全识别出这些模型,但我们使用微分代数方法来确定可识别的参数组合。通过使用隐孢子虫和大肠杆菌的案例研究,我们发现,如果不考虑双相病原体动态,可能会导致严重低估或高估疾病风险和病原体浓度,具体取决于上下文。通过更好地了解预计两相死亡的条件,可以建立更可靠的环境危害和人类健康风险模型。了解病原体腐烂的机制将最终加强我们的控制力度,以减轻对环境污染的危害。

著录项

  • 来源
    《Environmental Science & Technology》 |2017年第4期|2186-2196|共11页
  • 作者单位

    Department of Epidemiology, University of Michigan, 1415 Washington Heights, Ann Arbor, Michigan 48109, United States;

    Department of Epidemiology, University of Michigan, 1415 Washington Heights, Ann Arbor, Michigan 48109, United States;

    Department of Environmental Health Sciences, University of California Berkeley, 50 University Hall, Berekely, California 94720, United States;

    Department of Environmental Health Sciences, University of California Berkeley, 50 University Hall, Berekely, California 94720, United States;

    Department of Epidemiology, University of Michigan, 1415 Washington Heights, Ann Arbor, Michigan 48109, United States;

    Department of Epidemiology, University of Michigan, 1415 Washington Heights, Ann Arbor, Michigan 48109, United States;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);美国《化学文摘》(CA);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

  • 入库时间 2022-08-17 13:57:22

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号