首页> 外文期刊>Environmental Science & Technology >Self-Assembled Nano-FeO(OH)/Reduced Graphene Oxide Aerogel as a Reusable Catalyst for Photo-Fenton Degradation of Phenolic Organics
【24h】

Self-Assembled Nano-FeO(OH)/Reduced Graphene Oxide Aerogel as a Reusable Catalyst for Photo-Fenton Degradation of Phenolic Organics

机译:自组装的纳米FeO(OH)/氧化石墨烯气凝胶作为可重用的酚类有机物的光芬顿降解催化剂

获取原文
获取原文并翻译 | 示例
       

摘要

Fabrication of visible-light-responsive, macroscopic photo-Fenton catalysts is crucial for wastewater treatment. Here, we report a facile fabrication method for nano-FeO(OH)/reduced graphene oxide aerogels (FeO(OH)-rGA) equipped with a stable macrostructure and a high efficiency for catalytic degradation of phenolic organics. The structure of FeO(OH)/rGA was characterized by SEM, TEM, XPS, Raman analysis. The FeO(OH) is the main constituent of ferrihydrite, which dispersed in the graphene aerogel with a particle size of ∼3 nm can efficiently activate H_(2)O_(2) to generate abundant •OH. The excellent performance of the FeO(OH)/rGO aerogel was specifically exhibited by the outstanding catalyst activity, sustained mineralization and eminent reaction rate for phenolic organics. A synergy effect between FeO(OH) and graphene aerogel was observed, which came from the extensive electron transfer channels and active sites of the 3D graphene aerogel and the visible-light-activated FeO(OH) and H_(2)O_(2) consistently producing •OH. The FeO(OH)/rGA could be reused for 10 cycles without a reduction in the catalytic activity and had less iron leaching, which guarantees that the active ingredient remains in the gel. Moreover, the FeO(OH)/rGA induced photo-Fenton degradation of 4-chlorophenol under near neutral pH conditions because the tight connection of FeO(OH) with the rGO aerogel results in less iron leaching and prevents the generation of Fe(OH)_(3). The 4-chlorophenol was completely removed in 80 min with a 0.074 min~(–1) rate constant in the FeO(OH)-rGA/H_(2)O_(2) photo-Fenton system under visible-light irradiation, and mineralization rate was up to 80% after 6 h. Oxidative •OH can continuously attack 4-chlorophenol, 2,4,6-trichlorophenol and bisphenol A without selectivity. These results lay a foundation for highly effective and durable photo-Fenton degradation of phenolic organics at near neutral pH and sufficient activation of H_(2)O_(2) for future applications.
机译:可见光响应型宏观光芬顿催化剂的制备对于废水处理至关重要。在这里,我们报告了一种具有稳定的宏观结构和高效催化降解酚类有机物的纳米FeO(OH)/氧化石墨烯气凝胶(FeO(OH)-rGA)的简便制造方法。通过SEM,TEM,XPS,拉曼分析对FeO(OH)/ rGA的结构进行了表征。 FeO(OH)是水铁矿的主要成分,它分散在粒径约3 nm的石墨烯气凝胶中可以有效活化H_(2)O_(2)生成大量的•OH。 FeO(OH)/ rGO气凝胶的优异性能特别是由于其出色的催化剂活性,持续的矿化作用和对酚类有机物的出色反应速率而特别展现。观察到FeO(OH)与石墨烯气凝胶之间的协同效应,这是由于3D石墨烯气凝胶的广泛电子传递通道和活性位点以及可见光活化的FeO(OH)和H_(2)O_(2)始终产生•OH。 FeO(OH)/ rGA可以重复使用10个循环而不会降低催化活性,并且铁的浸出更少,从而确保了活性成分仍保留在凝胶中。此外,FeO(OH)/ rGA在接近中性pH的条件下引起4-氯苯酚的光芬顿降解,因为FeO(OH)与rGO气凝胶的紧密连接导致较少的铁浸出并防止Fe(OH)的产生_(3)。 FeO(OH)-rGA / H_(2)O_(2)光-Fenton体系在可见光照射下,在80分钟内以0.074 min〜(–1)速率常数将4-氯苯酚完全去除,并矿化6小时后,发生率高达80%。氧化性•OH可以连续地攻击4-氯苯酚,2,4,6-三氯苯酚和双酚A而没有选择性。这些结果为在近中性pH值条件下酚类有机物的高效持久的光芬顿降解以及H_(2)O_(2)的充分活化为将来的应用奠定了基础。

著录项

  • 来源
    《Environmental Science & Technology》 |2018年第12期|7043-7053|共11页
  • 作者单位

    Department of Environmental Science, Zhejiang University, Hangzhou, Zhejiang 310058, China,Zhejiang Provincial Key Laboratory of Organic Pollutant Process and Control, Zhejiang University, Hangzhou, Zhejiang 310058, China;

    Department of Chemistry, Zhejiang University, Hangzhou, Zhejiang 310027, China,State Key Laboratory of Silica Materials, Zhejiang University, Hangzhou, Zhejiang 310027, China;

    Department of Environmental Science, Zhejiang University, Hangzhou, Zhejiang 310058, China,Zhejiang Provincial Key Laboratory of Organic Pollutant Process and Control, Zhejiang University, Hangzhou, Zhejiang 310058, China;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);美国《化学文摘》(CA);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

  • 入库时间 2022-08-17 13:56:42

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号