首页> 外文期刊>Environmental Science & Technology >Au@Pd Bimetallic Nanocatalyst for Carbon—Halogen Bond Cleavage: An Old Story with New Insight into How the Activity of Pd is Influenced by Au
【24h】

Au@Pd Bimetallic Nanocatalyst for Carbon—Halogen Bond Cleavage: An Old Story with New Insight into How the Activity of Pd is Influenced by Au

机译:用于碳-卤素键裂解的Au @ Pd双金属纳米催化剂:一个古老的故事,对Au对Pd的活性有何影响的新见解

获取原文
获取原文并翻译 | 示例
       

摘要

AuPd bimetallic nanocatalysts exhibit superior catalytic performance in the cleavage of carbon–halogen bonds (C–X) in the hazardous halogenated pollutants. A better understanding of how Au atoms promote the reactivity of Pd sites rather than vaguely interpreting as bimetallic effect and determining which type of Pd sites are necessary for these reactions are crucial factors for the design of atomically precise nanocatalysts that make full use of both the Pd and Au atoms. Herein, we systematically manipulated the coordination number of Pd–Pd, d-orbital occupation state, and the Au–Pd interface of the Pd reactive centers and studied the structure–activity relationship of Au–Pd in the catalyzed cleavage of C–X bonds. It is revealed that Au enhanced the activity of Pd atoms primarily by increasing the occupation state of Pd d-orbitals. Meanwhile, among the Pd sites formed on the Au surface, five to seven contiguous Pd atoms, three or four adjacent Pd atoms, and isolated Pd atoms were found to be the most active in the cleavage of C–Cl, C–Br, and C–I bonds, respectively. Besides, neighboring Au atoms directly contribute to the weakening of the C–Br/C–I bond. This work provides new insight into the rational design of bimetallic metal catalysts with specific catalytic properties.
机译:AuPd双金属纳米催化剂在有害卤代污染物中的碳-卤素键(C-X)裂解中表现出优异的催化性能。更好地了解Au原子如何促进Pd位的反应性,而不是模糊地解释为双金属效应并确定这些反应所必需的Pd位类型是设计原子级精确纳米催化剂的关键因素,该催化剂必须充分利用两种Pd和金原子。在本文中,我们系统地操纵了Pd-Pd的配位数,d轨道占据状态以及Pd反应中心的Au-Pd界面,并研究了Au-Pd在C-X键催化裂解中的构效关系。 。揭示了Au主要通过增加Pd d-轨道的占据状态来增强Pd原子的活性。同时,在Au表面上形成的Pd位点中,发现五到七个连续的Pd原子,三个或四个相邻的Pd原子和孤立的Pd原子在裂解C–Cl,C–Br和Cb时最活跃。 C–I键分别。此外,相邻的金原子直接导致C-Br / C-I键的削弱。这项工作为具有特定催化性能的双金属金属催化剂的合理设计提供了新的见识。

著录项

  • 来源
    《Environmental Science & Technology》 |2018年第7期|4244-4255|共12页
  • 作者单位

    State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China;

    State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China,Department of Chemistry, Faculty of Material Sciences and Chemistry, China University of Geosciences, Wuhan 430074, China;

    Department of Chemistry, Faculty of Material Sciences and Chemistry, China University of Geosciences, Wuhan 430074, China;

    State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China,Department of Chemistry, Faculty of Material Sciences and Chemistry, China University of Geosciences, Wuhan 430074, China;

    State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China;

    State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China;

    State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China;

    State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China;

    State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);美国《化学文摘》(CA);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

  • 入库时间 2022-08-17 13:56:40

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号