首页> 外文期刊>Environmental Science & Technology >Integrating Circular Economy Strategies with Low-Carbon Scenarios: Lithium Use in Electric Vehicles
【24h】

Integrating Circular Economy Strategies with Low-Carbon Scenarios: Lithium Use in Electric Vehicles

机译:将循环经济战略与低碳情景相结合:电动汽车中的锂使用

获取原文
获取原文并翻译 | 示例
           

摘要

Electrification of the transport sector will support its decarbonization, yet significantly change material requirements. This calls for an integrated modeling approach internalizing metal demand-supply dynamics in low-carbon scenarios to support the Paris agreement on climate change and sustainable material circulation. Here we develop a step toward the integrated simulation of energy-materials scenarios by unifying a stock-flow dynamics model for low-carbon scenarios using linear programming. The modeling framework incorporates lithium supply from both mines and end-of-life (EoL) recycling for projected use in electric vehicles on a global basis. The results show that supply constraints, which could become apparent from around 2030 in the case of current recycling rates (<1%), would impede the deployment of battery electric vehicles (BEVs), leading to the generation of an additional 300 Mt-CO2 of emissions for vehicle operation in 2050. Another important finding is that increasing the recycling rate to 80% could substantially relieve restrictions on the introduction of BEVs without requiring primary supply from natural deposits far beyond historical rates of expansion. While EoL recycling is important from a long-term perspective, an EoL-oriented strategy has little effect on the short/medium-term (such as to 2030) lithium demand-supply balance because of exponential demand growth and long living batteries. Importantly, findings in this study emphasize the necessity of tackling climate change and resource circulation in an integrated manner.
机译:运输部门的电气化将支持其脱碳,但会大大改变材料要求。这就要求采用集成建模方法,将低碳情景中的金属供需动态内在化,以支持有关气候变化和可持续材料流通的巴黎协议。在这里,我们通过使用线性规划统一低碳情景的库存流动力学模型,朝着能源-材料情景的集成模拟迈出了一步。该建模框架结合了来自矿山的锂供应和报废(EoL)回收,预计将在全球范围内用于电动汽车。结果表明,从目前的回收率(<1%)开始,供应限制可能会在2030年左右变得明显,这将阻碍电池电动汽车(BEV)的部署,从而导致产生额外的300 Mt-CO2另外,一项重要的发现是,将回收率提高至80%可以大大缓解对引入BEV的限制,而无需从自然沉积中获得的主要供应量远远超过历史增长速度。从长期的角度来看,EoL回收很重要,但由于指数增长和电池寿命长,面向EoL的战略对短期/中期(例如到2030年)锂需求-供应平衡几乎没有影响。重要的是,这项研究的结果强调必须以综合方式应对气候变化和资源循环。

著录项

  • 来源
    《Environmental Science & Technology》 |2019年第20期|11657-11665|共9页
  • 作者单位

    Natl Inst Environm Studies Ctr Mat Cycles & Waste Management Res 16-2 Onogawa Tsukuba Ibaraki 3058506 Japan|Univ Tokyo Grad Sch Frontier Sci 5-1-5 Kashiwanoha Kashiwa Chiba 2778563 Japan;

    Natl Inst Environm Studies Ctr Mat Cycles & Waste Management Res 16-2 Onogawa Tsukuba Ibaraki 3058506 Japan|Univ Sydney Fac Sci Sch Phys ISA Camperdown NSW 2006 Australia;

    Natl Inst Environm Studies Ctr Mat Cycles & Waste Management Res 16-2 Onogawa Tsukuba Ibaraki 3058506 Japan;

    Kyoto Univ Grad Sch Energy Sci Sakyo Ku Kyoto 6068501 Japan;

    Univ Technol Sydney Inst Sustainable Futures Ultimo NSW 2007 Australia;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);美国《化学文摘》(CA);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号