首页> 外文期刊>Environmental Science & Technology >Diffusion-Based Recycling of Flavins Allows Shewonella oneidensis MR-1 To Yield Energy from Metal Reduction Across Physical Separations
【24h】

Diffusion-Based Recycling of Flavins Allows Shewonella oneidensis MR-1 To Yield Energy from Metal Reduction Across Physical Separations

机译:黄素的基于扩散的再循环使Shewonella oneidensis MR-1能够通过物理分离从金属还原中获得能量

获取原文
获取原文并翻译 | 示例
           

摘要

We fabricated a microfluidic reactor with a nanoporous barrier to characterize electron transport between Shewanella oneidensis MR-1 and the metal oxide birnessite across a physical separation. Real-time quantification of electron flux across this barrier by strains with different electron transfer capabilities revealed that this bacterium exports flavins to its surroundings when faced with no direct physical access to an electron acceptor, allowing it to reduce metals at distances exceeding 60 mu m. An energy balance indicates that flavins must be recycled for S. oneidensis MR-1 to yield energy from lactate oxidation coupled to flavin reduction. In our system, we find that flavins are recycled between 24 and 60 times depending on flow conditions. This energy saving strategy, which until now had not been systematically tested or captured in environmentally relevant systems, suggests that electron shuttling microorganisms have the capacity to access and reduce metals in physically distant or potentially toxic microenvironments (i.e., pores with soluble and transiently sorbed toxins) where direct contact is limited or unfavorable. Our results challenge the prediction that diffusion-based electron shuttling is only effective across short distances and may lead to improved bioremediation strategies or advance biogeochemical models of electron transfer in anaerobic sediments.
机译:我们制造了具有纳米多孔屏障的微流控反应器,以表征物理分离中希瓦氏菌希瓦氏菌MR-1与金属氧化物水钠锰矿之间的电子传输。通过具有不同电子传递能力的菌株对穿过该屏障的电子通量进行实时定量分析,结果表明,这种细菌在没有直接物理接触电子受体的情况下,将黄素输出到周围环境中,从而可以还原距离超过60微米的金属。能量平衡表明,黄素必须被回收用于沙门氏菌MR-1,才能通过乳酸氧化和黄素还原而产生能量。在我们的系统中,我们发现黄素根据流动条件在24至60次之间被回收。迄今为止尚未在环境相关系统中进行过系统测试或捕获的这种节能策略表明,电子穿梭微生物能够接近并还原物理上遥远或潜在有毒的微环境中的金属(即,具有可溶和短暂吸附毒素的孔) )直接接触受到限制或不利的地方。我们的结果对以下预测提出了挑战:基于扩散的电子穿梭仅在短距离内有效,并且可能导致改进的生物修复策略或推进厌氧沉积物中电子转移的生物地球化学模型。

著录项

  • 来源
    《Environmental Science & Technology》 |2019年第7期|3480-3487|共8页
  • 作者单位

    Univ Illinois, Dept Civil & Environm Engn, 205 North Mathews Ave, Urbana, IL 61801 USA|Univ Texas Austin, Dept Civil Architectural & Environm Engn, 301 East Dean Keeton St, Austin, TX 78712 USA;

    Univ Texas Austin, Dept Civil Architectural & Environm Engn, 301 East Dean Keeton St, Austin, TX 78712 USA;

    Univ Illinois, Dept Geol, 605 East Springfield Ave, Champaign, IL 61820 USA;

    Univ Illinois, Dept Civil & Environm Engn, 205 North Mathews Ave, Urbana, IL 61801 USA;

    Univ Texas Austin, Dept Civil Architectural & Environm Engn, 301 East Dean Keeton St, Austin, TX 78712 USA;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);美国《化学文摘》(CA);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号