首页> 外文期刊>Environmental Pollution >Comparison of secondary organic aerosol (SOA) formation during o-,m-, and p-xylene photooxidation
【24h】

Comparison of secondary organic aerosol (SOA) formation during o-,m-, and p-xylene photooxidation

机译:在邻,间和对二甲苯光氧化过程中形成次级有机气溶胶(SOA)的比较

获取原文
获取原文并翻译 | 示例
           

摘要

Despite extensive effort to characterize xylene-isomer-derived secondary organic aerosols (SOAs) over the past decade, differences in 50A composition among xylene isomers, and their relative contributions to SOA formation remain poorly understood. Herein, we reinvestigated the photooxidation of o-, m-, and p-xylene under two limiting NO conditions. Dicarbonyls, IBM (the acronym of C-3-trione, 2,3-butanedione, and 3-methyl-2-oxiranecarbaldehyde with the same [M+H](+) m/z value of 87), and highly oxidized species (HOS), based on the m/z 61 fragment, were determined to be the predominant SOA components arising from xylene photooxidation; however, their relative contributions to SOA formation appear to depend on the xylene substitution pattern. In the initial stages of the reaction, dicarbonyls present in the SOA from m- and p-xylene, and TBM in the SOA from o-xylene, were the main contributors to new particle formation (NPF). Based on their significant levels of formation, HOS and TBM were characterized to be critical components that enhance SOA growth. High NO levels were noted to inhibit the formation of C-3-trione and 2,3-butanedione in the SOA from m- and o-xylene, whereas the formation of 3-methyl-2-oxiranecarbaldehyde during p-xylene photooxidation was significantly promoted. These results reveal that the substitution pattern of the xylene isomer is a significant factor that determines these differences. In addition, decreases in the levels of dicarbonyls and IBM during NPF and the formation of HOS in the presence of high levels of NO may he important factors that lead to lower SOA yields compared to those obtained under low-NO conditions. This work contributes to a better understanding of the formation mechanism of xylene-derived SOAs. (C) 2018 Elsevier Ltd. All rights reserved.
机译:尽管在过去十年中为表征二甲苯异构体衍生的二级有机气溶胶(SOA)进行了大量努力,但对二甲苯异构体之间50A组成的差异及其对SOA形成的相对贡献仍然知之甚少。在这里,我们重新研究了在两个极限NO条件下邻,间和对二甲苯的光氧化作用。二羰基,IBM(C-3-三酮,2,3-丁二酮和3-甲基-2-环氧乙烷甲醛的首字母缩写,其[M + H](+)m / z值等于87)和高度氧化的物质(HOS)基于m / z 61片段,被确定为由二甲苯光氧化产生的主要SOA组分;但是,它们对SOA形成的相对贡献似乎取决于二甲苯取代模式。在反应的初始阶段,SOA中由间二甲苯和对二甲苯产生的二羰基化合物,以及SOA中由邻二甲苯产生的TBM是导致新颗粒形成(NPF)的主要因素。基于它们的显着形成水平,HOS和TBM被认为是增强SOA生长的关键组成部分。注意到高的NO水平会抑制SOA中由间二甲苯和邻二甲苯形成C-3-三酮和2,3-丁二酮,而对二甲苯光氧化过程中3-甲基-2-环氧乙烷甲醛的形成明显晋升。这些结果表明,二甲苯异构体的取代方式是决定这些差异的重要因素。另外,与低NO条件下获得的SOA收率相比,NPF期间二羰基和IBM的水平降低以及在高NO含量下形成HOS可能是导致SOA收率降低的重要因素。这项工作有助于更好地了解二甲苯衍生的SOA的形成机理。 (C)2018 Elsevier Ltd.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号