首页> 外文期刊>Environmental Pollution >Long-term trends and spatial variability in nitrate leaching from alpine catchment - lake ecosystems in the Tatra Mountains (Slovakia-Poland)
【24h】

Long-term trends and spatial variability in nitrate leaching from alpine catchment - lake ecosystems in the Tatra Mountains (Slovakia-Poland)

机译:塔特拉山(斯洛伐克-波兰)高山流域-湖泊生态系统中硝酸盐淋失的长期趋势和空间变异性

获取原文
获取原文并翻译 | 示例
       

摘要

Relationships between catchment characteristics of 31 alpine lakes and observed trends in lake water concentrations of nitrate were evaluated in the Tatra Mountains. Nitrate concentrations increased from background levels < 4 mu eq l(-1) in the 1930s to maxima (up to 55 mu ecl l(-1)) in the 1980s, after which they declined to 4-44 mu eq l(-1) by the late 1990s. In-lake nitrate concentrations correlated negatively with parameters characterising catchment-weighted mean pools (CWM; kg m(-2)) of Soil, i.e. with percent land cover with meadow and soil depth, and positively with grade of terrain, annual precipitation, and the highest elevation in the catchment. The CWM pool of soil and annual precipitation explained together 65% of the current spatial variability in nitrate concentrations. Denitrification and direct N deposition on surface area explained 14% of the variability. Increased atmospheric N deposition and declining net N retention in soils were responsible for long-term changes in nitrate concentrations. Long-term decline in %N retention in soils decreased along with the estimated decline in C:N ratios (from 21 to 18 on average during the last 70 years). An empirical model linking nitrate concentrations in different types of alpine Tatra Mountain takes to four independent variables (CWM soil pool, annual precipitation, increased N deposition, and average trend in soil C:N ratios) explained 80% of the observed spatial and temporal nitrate variability over the period 1937-2000. (c) 2005 Elsevier Ltd. All rights reserved.
机译:在塔特拉山评估了31个高山湖泊的流域特征与湖水中硝酸盐浓度的观测趋势之间的关系。硝酸盐浓度从1930年代的背景水平<4 mu eq l(-1)增加到1980年代的最大值(最高55 mu ecl l(-1)),之后降至4-44μeq l(-1)。 )到1990年代后期。湖中硝酸盐浓度与表征流域加权土壤平均池(CWM; kg m(-2))的参数呈负相关,即与草地和土壤深度的土地覆盖百分比,与地形等级,年降水量和流域中最高的海拔。土壤和年降水量的CWM池共同解释了当前硝酸盐浓度空间变化的65%。反硝化作用和表面积上直接的N沉积解释了14%的可变性。大气中氮的沉积增加和土壤中净氮的保留减少是造成硝酸盐浓度长期变化的原因。土壤中氮的长期保留率随着碳氮比的下降而下降(在过去70年中平均从21下降到18)。一个将不同类型的高山塔特拉山中硝酸盐浓度联系起来的经验模型涉及四个独立变量(CWM土壤库,年降水量,N沉积增加以及土壤C:N比的平均趋势)解释了观测到的80%的时空硝酸盐1937-2000年期间的波动性。 (c)2005 Elsevier Ltd.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号