首页> 外文期刊>Environmental Monitoring and Assessment >Energy budgeting and carbon footprint of transgenic cotton-wheat production system through peanut intercropping and FYM addition
【24h】

Energy budgeting and carbon footprint of transgenic cotton-wheat production system through peanut intercropping and FYM addition

机译:通过花生间作和FYM添加转基因棉花-小麦生产系统的能源预算和碳足迹

获取原文
获取原文并翻译 | 示例
       

摘要

Two of the most pressing sustainability issues are the depletion of fossil energy resources and the emission of atmospheric green house gases like carbon dioxide to the atmosphere. The aim of this study was to assess energy budgeting and carbon footprint in transgenic cotton-wheat cropping system through peanut intercropping with using 25-50 % substitution of recommended dose of nitrogen (RDN) of cotton through farmyard manure (FYM) along with 100 % RDN through urea and control (0 N). To quantify the residual effects of previous crops and their fertility levels, a succeeding crop of wheat was grown with varying rates of nitrogen, viz. 0, 50, 100, and 150 kg ha(-1). Cotton+ peanut-wheat cropping system recorded 21 % higher system productivity which ultimately helped to maintain higher net energy return (22 %), energy use efficiency (12 %), human energy profitability (3 %), energy productivity (7 %), carbon outputs (20 %), carbon efficiency (17 %), and 11 % lower carbon footprint over sole cotton-wheat cropping system. Peanut addition in cotton-wheat system increased the share of renewable energy inputs from 18 to 21 %. With substitution of 25 % RDN of cotton through FYM, share of renewable energy resources increased in the range of 21 % which resulted into higher system productivity (4 %), net energy return (5 %), energy ratio (6 %), human energy profitability (74 %), energy productivity (6 %), energy profitability (5 %), and 5 % lower carbon footprint over no substitution. The highest carbon footprint (0.201) was recorded under control followed by 50 % substitution of RDN through FYM (0.189). With each successive increase in N dose up to 150 kg N ha(-1) to wheat, energy productivity significantly reduced and share of renewable energy inputs decreased from 25 to 13 %. Application of 100 kg N ha(-1) to wheat maintained the highest grain yield (3.71 t ha(-1)), net energy return (105,516 MJ ha(-1)), and human energy profitability (223.4) over other N doses applied to wheat. Application of 50 kg N ha(-1) to wheat maintained the least carbon footprint (0.091) followed by 100 kg N ha(-1) (0.100). Our study indicates that system productivity as well as energy and carbon use efficiencies of transgenic cotton-wheat production system can be enhanced by inclusion of peanut as an intercrop in cotton and substitution of 25 % RDN of cotton through FYM, as well as application of 100 kg N ha(-1) to succeeding wheat crop.
机译:最紧迫的可持续性问题中的两个是化石能源的枯竭和向大气排放二氧化碳等大气温室气体。这项研究的目的是通过花生间作来评估转基因棉花/小麦种植系统中的能源收支和碳足迹,其中使用25-50%的推荐剂量的棉花氮素(RDN)通过农田肥料(FYM)替代100%通过尿素控制RDN(0 N)。为了量化先前作物的残留影响及其肥力水平,在随后的小麦中种植了不同氮素含量的小麦。 0、50、100和150 kg ha(-1)。棉花+花生-小麦种植系统的系统生产率提高了21%,最终帮助维持了较高的净能源回报率(22%),能源利用效率(12%),人类能源获利能力(3%),能源生产率(7%),碳产量(20%),碳效率(17%)和仅棉花-小麦种植系统的碳足迹降低了11%。棉花-小麦系统中添加花生使可再生能源投入的份额从18%增加到21%。通过FYM替代25%的RDN棉花,可再生能源资源的份额增加了21%,从而提高了系统生产率(4%),净能源回报率(5%),能源比率(6%),人为能源收益率(74%),能源生产率(6%),能源收益率(5%)和无替代的碳足迹降低5%。在控制下记录了最高的碳足迹(0.201),然后通过FYM(0.189)取代了RDN 50%。随着小麦氮素剂量的连续增加(最高150 kg N ha(-1)),能源生产率显着下降,可再生能源投入的份额从25%降至13%。在小麦上施用100 kg N ha(-1)可以保持最高谷物产量(3.71 t ha(-1)),净能量回报(105,516 MJ ha(-1))和人类能量获利能力(223.4)。适用于小麦的剂量。在小麦上施用50 kg N ha(-1)可以保持最小的碳足迹(0.091),其次是100 kg N ha(-1)(0.100)。我们的研究表明,通过在棉花中加入花生作为间作作物并通过FYM替代25%RDN的棉花,并施用100的棉花,可以提高转基因棉/小麦生产系统的系统生产率以及能源和碳的利用效率。 kg N ha(-1)到随后的小麦作物。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号