...
首页> 外文期刊>Environmental Geology >Numerical evaluation of shear and tensile stimulation volumes based on natural fracture failure mechanism in tight and shale reservoirs
【24h】

Numerical evaluation of shear and tensile stimulation volumes based on natural fracture failure mechanism in tight and shale reservoirs

机译:基于自然裂缝破坏机制的致密页岩储层剪切和拉伸增产量的数值评估

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

Although many scholars have put forward the methods and models to predict the stimulated reservoir volume (SRV), the mathematical models do not reflect well the mechanism of SRV development. In addition, the effects of relative fracture treatment and reservoir parameters on different stimulation areas are not well understood. During the process of hydraulic fracture propagation, fracturing fluid leak-off from the main fracture due to the activation of natural fractures can elevate the reservoir pore pressure, resulting in shear slippage and tensile failure of the natural fractures and, finally, in microseismic events. Different stimulation regions, including tensile failure zone, shear failure zone, and swept region, may co-exist along the activated natural fracture. In this study, a new mathematical model was presented based on the shear slippage and tensile failure criterion of weakness plane, hydraulic fracture propagation model, mechanical conditions of natural fracture activation, fluid diffusivity equation, and using a shear dilation model to characterize the reservoir permeability variation after shear slippage of the natural fractures, so as to better describe the growth of SRV. The model was also verified by matching field microseismic monitoring data. Then, the effects of azimuth angle and horizontal principal stress difference on the shear and tensile failure pressure of natural fractures, permeability enhancement, and critical net pressure of main fracture to activate natural fractures were illustrated. The impacts of treatment fluid viscosity, natural fracture azimuth angle, and horizontal stress difference on the reservoir pore pressure, SRV shape distribution, different SRV sizes, and SRV bandwidth and length were also analyzed. The results indicated that increasing the horizontal stress difference decreased the tensile failure area but increased the shear slippage zone sharply. Both shear and tensile failure regions decreased on increasing the natural fracture azimuth angle from 30 degrees to 50 degrees. Increasing the fluid viscosity from 1 to 10 mPabolds expanded the size of the tensile failure zone but reduced the shear slip zone/bold.
机译:尽管许多学者提出了预测增产油藏体积(SRV)的方法和模型,但数学模型不能很好地反映SRV发育的机理。另外,相对裂缝处理和储层参数对不同增产区域的影响尚不十分清楚。在水力压裂扩展过程中,由于天然裂缝的活化而使压裂液从主裂缝中泄漏出来,会升高储层孔隙压力,从而导致天然裂缝的剪切滑移和拉伸破坏,最终导致微地震。沿拉伸天然裂缝可能共存不同的刺激区域,包括拉伸破坏带,剪切破坏带和掠过区域。在这项研究中,基于弱层的剪切滑移和拉伸破坏准则,水力裂缝传播模型,自然裂缝活化的力学条件,流体扩散方程,并使用剪切膨胀模型来表征储层渗透率,提出了一个新的数学模型。天然裂缝剪切滑移后的变化,以更好地描述SRV的增长。该模型还通过匹配现场微震监测数据进行了验证。然后,说明了方位角和水平主应力差对天然裂缝的剪切和拉伸破坏压力,渗透率的提高以及激活天然裂缝的主裂缝的临界净压力的影响。还分析了处理液粘度,天然裂缝方位角和水平应力差对储层孔隙压力,SRV形状分布,不同SRV尺寸以及SRV带宽和长度的影响。结果表明,增加水平应力差可减小拉伸破坏面积,但可显着增加剪切滑移区。当自然裂缝方位角从30度增加到50度时,剪切破坏和拉伸破坏区域都会减小。将流体粘度从1 mPa增大到10 mPa 可以扩大拉伸破坏区域的大小,但减小剪切滑移区域

著录项

  • 来源
    《Environmental Geology》 |2019年第5期|175.1-175.15|共15页
  • 作者单位

    Southwest Petr Univ, State Key Lab Oil & Gas Reservoir Geol & Exploiat, Chengdu 610500, Sichuan, Peoples R China;

    Southwest Petr Univ, State Key Lab Oil & Gas Reservoir Geol & Exploiat, Chengdu 610500, Sichuan, Peoples R China;

    Southwest Petr Univ, State Key Lab Oil & Gas Reservoir Geol & Exploiat, Chengdu 610500, Sichuan, Peoples R China;

    CNPC, Engn Technol Res Inst, Southwest Oil & Gas Field Co, Chengdu, Sichuan, Peoples R China;

    CNPC, Inst Oil & Gas Engn, Tarim Oilfield Co, Korla, Xinjiang, Peoples R China;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Natural fracture; Shear dilation; Shear failure; Stimulated reservoir volume; Tensile failure;

    机译:自然裂缝;剪切膨胀;剪切破坏;储层刺激量;拉伸破坏;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号