...
首页> 外文期刊>Environmental earth sciences >Theoretical and experimental validation of mining-enhanced permeability for simultaneous exploitation of coal and gas
【24h】

Theoretical and experimental validation of mining-enhanced permeability for simultaneous exploitation of coal and gas

机译:煤与瓦斯同时开采的增透性理论与实验验证

获取原文
获取原文并翻译 | 示例

摘要

Simultaneous recovery of coal and methane is a promising solution for making reasonable use of energy resources and preventing gas disasters. Coal mining produces an effect that enhances the permeability of coal and thus paradoxically enhances the ability to collect methane. Hence, existing knowledge about permeability enhancement needs to be improved. Therefore, a new parameter, referred to as mining-enhanced permeability, is proposed to characterize the evolution of permeability for coal and other rocks. A theoretical expression for the new parameter is deduced from the Tablet Fluid model. To analyze the mining-enhanced permeability of coal mass quantitatively, a laboratory test was conducted to simulate the stress environment of the protected layers in protected coal seam mining. At the same time, a field test was conducted at a working face of Mine No. 10 at the Pingdingshan Coal Mining Group in China. The evolution of the volumetric strain and mining-enhanced permeability for both protective and protected layers were analyzed quantitatively. The loading-induced volumetric strain and permeability enhancement in the laboratory showed improvements of 1.59 and 72.26 %, respectively. The mining-induced volumetric strain and permeability enhancement also showed improvements of 0.14 and 7.77 %, respectively. The evolution of enhanced-permeability agreed with gas flow data observed in both laboratory and in situ tests. Namely, a higher mining-enhanced permeability led to high gas flow, demonstrating the plausibility of mining-enhanced permeability theory based on the Tablet Fluid model. The theory describes the impact of mining on coal permeability and quantitatively captures the evolution of coal permeability. In conclusion, the proposed theory provides a strong foundation for designing systems to simultaneously recover coal and gas.
机译:煤和甲烷的同时回收是合理利用能源和防止瓦斯灾害的有希望的解决方案。煤炭开采产生了一种提高煤炭渗透性的效果,因此反常地提高了收集甲烷的能力。因此,需要提高有关渗透率增强的现有知识。因此,提出了一个新的参数,称为采矿增强的渗透率,以表征煤和其他岩石的渗透率的演变。从“平板电脑流体”模型推导出新参数的理论表达式。为了定量分析煤层的增透性,进行了实验室测试,以模拟保护煤层开采中保护层的应力环境。同时,在中国平顶山煤矿集团十号矿的工作面进行了现场测试。定量分析了保护层和保护层的体积应变和采矿渗透率的演变。在实验室中,加载引起的体积应变和渗透率提高分别达到1.59%和72.26%。采矿引起的体积应变和渗透率增强也分别显示出0.14%和7.77%的提高。渗透率的提高与实验室和现场测试中观察到的气体流量数据一致。即,较高的采矿渗透率导致较高的气流,这证明了基于“平板流体”模型的采矿渗透率理论的合理性。该理论描述了采矿对煤渗透率的影响,并定量地记录了煤渗透率的演变。总之,所提出的理论为设计同时回收煤和天然气的系统提供了坚实的基础。

著录项

  • 来源
    《Environmental earth sciences 》 |2015年第10期| 5951-5962| 共12页
  • 作者单位

    Sichuan Univ, Chengdu 610065, Peoples R China|Sichuan Univ, Coll Water Resource & Hydropower, Key Lab Hydraul & Mt River Engn, Chengdu 610065, Peoples R China;

    Sichuan Univ, Key Lab Energy Engn Safety & Mech Disaster, Minist Educ, Chengdu 610065, Peoples R China;

    Sichuan Univ, Coll Water Resource & Hydropower, Key Lab Hydraul & Mt River Engn, Chengdu 610065, Peoples R China|Sichuan Univ, Key Lab Energy Engn Safety & Mech Disaster, Minist Educ, Chengdu 610065, Peoples R China;

    Sichuan Univ, Coll Water Resource & Hydropower, Key Lab Hydraul & Mt River Engn, Chengdu 610065, Peoples R China|Sichuan Univ, Key Lab Energy Engn Safety & Mech Disaster, Minist Educ, Chengdu 610065, Peoples R China;

    China Univ Min & Technol, State Key Lab Coal Resources & Safe Min, Beijing 100083, Peoples R China;

    China Univ Min & Technol, State Key Lab Geomech & Deep Underground Engn, Xuzhou 221116, Jiangsu, Peoples R China;

    Sichuan Univ, Coll Water Resource & Hydropower, Key Lab Hydraul & Mt River Engn, Chengdu 610065, Peoples R China|Sichuan Univ, Key Lab Energy Engn Safety & Mech Disaster, Minist Educ, Chengdu 610065, Peoples R China;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Coal and gas exploitation; Permeability; Mining-enhanced permeability; Volumetric strain;

    机译:煤炭与天然气开采渗透率采矿性渗透率体积应变;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号