首页> 外文期刊>Environmental earth sciences >Numerical investigation on effect of varying injection scenario and relative permeability hysteresis on CO2 dissolution in saline aquifer
【24h】

Numerical investigation on effect of varying injection scenario and relative permeability hysteresis on CO2 dissolution in saline aquifer

机译:不同注入方案和相对渗透率滞后对盐水层中二氧化碳溶解影响的数值研究

获取原文
获取原文并翻译 | 示例
           

摘要

In subsurface storage of CO2 in saline aquifer, dissolution trapping is presumed to be the most feasible trapping mechanism that ensures storage safety by initial immobilization of injected buoyant CO2. Time span for this natural mechanism is, however, spanning in terms of decades. Accelerating the rate of dissolution by imposing various reservoir engineering principles is the peer area of research interest. Though dissolution of CO2 depends on pressure of the system, pressure buildup during injection process could potentially create or activate fractures, providing migration pathways for buoyant CO2 that questions safety of storage. Attempt has been made in the present paper to understand the impact of various injection scenarios, such as water alternate gas (WAG), intermittent and intermittent WAG injection scenario, toward enhancing dissolution rate with associated minimal effect on pressure buildup. Numerical model conceptualizing immiscible two-phase flow has been developed. Effect of hysteresis of relative permeability has been considered, and solubility of CO2 in brine is computed using developed thermodynamic model. An enhanced dissolution rate of about 68 % has been observed in case of WAG scenario, however with associated disadvantage on drastic borehole pressure buildup. On the contrary, lesser borehole pressure buildup has been observed in intermittent injection case, while dissolution rate is significantly lesser when compared with WAG process. Interestingly, it has also been inferred from present study that intermittent WAG process plays a crucial role in eliminating the primary disadvantages of WAG and intermittent process with promising enhanced dissolution rate than WAG and intermittent processes.
机译:在盐水含水层中CO2的地下存储中,溶出捕集被认为是最可行的捕集机制,可通过初始固定注入的浮力CO2来确保存储安全。但是,这种自然机制的时间跨度为数十年。通过施加各种油藏工程原理来加快溶出速率是研究领域中的热点。尽管CO2的溶解取决于系统的压力,但在注入过程中压力的升高可能潜在地产生或激活裂缝,从而为漂浮的CO2提供了迁移途径,从而质疑了储存的安全性。本文已尝试理解各种注入方案的影响,例如水交替气(WAG),间歇和间歇WAG注入方案,以提高溶出速率,同时对压力累积的影响最小。已经建立了概念化不混溶两相流的数值模型。考虑了相对渗透率的滞后效应,并使用发达的热力学模型计算了CO2在盐水中的溶解度。在WAG情况下,已观察到溶出率提高了约68%,但伴随着急剧的井眼压力增加而带来的不利条件。相反,在间歇注入的情况下,可以观察到较小的井眼压力累积,而与WAG方法相比,溶解速率要小得多。有趣的是,从目前的研究中还可以推断出,间歇性WAG工艺在消除WAG和间歇性工艺的主要缺点中起着至关重要的作用,与WAG和间歇性工艺相比,有望提高溶出率。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号