...
首页> 外文期刊>Environmental Fluid Mechanics >A general solution of Benjamin-type gravity current in a channel of non-rectangular cross-section
【24h】

A general solution of Benjamin-type gravity current in a channel of non-rectangular cross-section

机译:非矩形截面通道中本杰明型重力流的一般解

获取原文
获取原文并翻译 | 示例
           

摘要

We consider the steady-state propagation of a high-Reynolds-number gravity current in a horizontal channel along the horizontal coordinate x. The bottom and top of the channel are at z = 0, H, and the cross-section is given by the quite general form −f 1(z) ≤ y ≤ f 2(z) for 0 ≤ z ≤ H, where f 1,2 are piecewise continuous functions and f 1 + f 2 0 for ${z in(0,H)}$ . The interface of the current is horizontal, the (maximum) thickness is h, its density is ρ c . The reduced gravity g′ = |ρ c /ρ a − 1|g (where ${- ghat{z}}$ is the gravity acceleration and ρ a the density of the ambient) drives the current with speed U into the stationary ambient fluid. We show that the dimensionless Fr = U/(g′ h)1/2, the rate of energy dissipation (scaled with the rate of pressure work), and the dimensionless head-loss Δ/h, can be expressed by compact formulas which involve three integrals over the cross-section areas of the current and ambient. By some standard manipulations these integrals are simplified into quite simple line-integrals of the shape-function of the channel, f(z) = f 1(z) + f 2(z), and of z f(z). This theory applies to Boussinesq and non-Boussinesq currents of “heavy” (bottom) and “light” (top) type. The classical results of Benjamin (J Fluid Mech 31:209–248, 1968) for a rectangular channel are fully recovered. We also recover the Fr results of Marino and Thomas (J Fluid Eng 131(5):051201, 2009) for channels of shape y = ±b z α (where b, α are positive constants); in addition, we consider the energy dissipation of these flows. The results provide insights into the effect of the cross-section shape on the behavior of the steady-state current, in quite general cases, for both heavy-into-light and light-into-heavy fluid systems, Boussinesq and non-Boussinesq. In particular, we show that a very deep current displays ${Fr = sqrt{2}}$ , and is dissipative; the value of Fr and rate of dissipation (absolute value) decrease when the thickness of the current increases. However, in general, energy considerations restrict the thickness of the current by a clear-cut condition of the form h/H ≤ a max 1.
机译:我们考虑高雷诺数重力电流在水平通道中沿水平坐标x的稳态传播。通道的底部和顶部位于z = 0,H处,并且横截面由非常普通的形式给出-f 1 (z)≤y≤f 2 (z) 0≤z≤H,其中f 1,2 是分段连续函数,并且$ {z in(0,H)} $的f 1 + f 2 。减小的重力g'= |ρc /ρa -1 | g(其中$ {-ghat {z}} $是重力加速度,ρa 的密度环境)将电流以速度U驱动到静止的环境流体中。我们证明了无量纲的Fr = U /(g'h)1/2 ,能量耗散率(与压力功的比率成比例)和无量纲的头部损失Δ/ h可以表示为通过涉及电流和环境横截面积的三个积分的紧凑公式。通过一些标准操作,这些积分被简化为通道形状函数f(z)= f 1 (z)+ f 2 (z)和zf(z)。该理论适用于“重”(底部)和“轻”(顶部)类型的Boussinesq和非Boussinesq电流。本杰明(J Fluid Mech 31:209–248,1968)关于矩形通道的经典结果已完全恢复。我们还恢复了Marino和Thomas的Fr结果(J Fluid Eng 131(5):051201,2009),用于形状为y =±b zα(其中b,α为正常数)的通道;另外,我们考虑这些流的能量耗散。该结果提供了有关在一般情况下,对于重到轻和轻到重流体系统Boussinesq和非Boussinesq而言,横截面形状对稳态电流行为的影响的见解。特别是,我们显示出非常深的电流显示$ {Fr = sqrt {2}} $,并且是耗散的;当电流厚度增加时,Fr值和耗散率(绝对值)减小。但是,总的来说,出于能量考虑,电流的厚度受到h / H≤max <1形式的明确条件的限制。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号