首页> 外文期刊>Environmental Engineering Science >Effect of Acidity and Elevated P_(CO_2) on Acid Neutralization within Pulsed Limestone Bed Reactors Receiving Coal Mine Drainage
【24h】

Effect of Acidity and Elevated P_(CO_2) on Acid Neutralization within Pulsed Limestone Bed Reactors Receiving Coal Mine Drainage

机译:酸度和升高的P_(CO_2)对接收矿井的脉冲石灰石床反应器中酸的影响

获取原文
获取原文并翻译 | 示例
       

摘要

Limestone has potential for reducing reagent costs and sludge volume associated with the treatment of acid mine drainage (AMD), but its use has been restricted by slow dissolution rates and sensitivity to scale forming reactions that retard transport of H~+ at the solid-liquid interface. We evaluated a pulsed limestone bed (PLB) remediation process designed to circumvent these problems through use of intermittently fluidized beds of granular limestone and elevated carbon dioxide pressure. PLB limestone dissolution (LD, mg/L), and effluent alkalinity (Alk, mg/L) were correlated with reactor pressure (P_(CO_2), kPa), influent acidity (Acy, mg/L) and reactor bed height (H, cm) using a prototype capable of processing 10 L/min. The PLB process effectively neutralized sulfuric acid acidity over the range of 6-1033 mg/L (as CaCO_3) while generating high concentrations of alkalinity (36-1086 mg/L) despite a hydraulic residence time of just 4.2-5.0 min. Alk and LD (mg/L CaCO_3) rose with increases in influent acidity and P_(CO_2) (p < 0.001) according to the models: Alk = 58 + 38.4 (P_(CO_2)~(0.5) + 0.080 (Acy) - 0.0059(P_(CO_2)~(0.5) (Acy); LD = 55 + 38.3 (P_(CO_2)~(0.5) + 1.08 (Acy) - 0.0059 (P_(CO_2)~(0.5) (Acy). Alkalinity decreased at an increasing rate with reductions in H over the range of 27.3-77.5 cm (p < 0.001). Carbon dioxide requirements (Q(avg)_(CO_2), L/min) increased with P_(CO_2) (p < 0.001) following the model Q(avg)_(CO_2 = 0.858 (P_(CO_2)~(0.620), resulting in a greater degree of pH buffering (depression) within the reactors, a rise in limestone solubility and an increase in limestone dissolution related to carbonic acid attack. Corresponding elevated concentrations of effluent alkalinity allow for sidestream treatment with blending. Numerical modeling demonstrated that carbon dioxide requirements are reduced as influent acidity rises and when carbon dioxide is recovered from system effluent and recycled. Field trials demonstrated that the PLB process is capable of raising the pH of AMD above that required for hydrolysis and precipitation of Fe~(3+) and Al~(3+) but not Fe~(2+) and Mn~(2+).
机译:石灰石具有减少与酸性矿山排水(AMD)处理相关的试剂成本和污泥量的潜力,但由于其缓慢的溶解速度和对水垢形成反应的敏感性(限制了H〜+在固液中的传输)而限制了其用途接口。我们评估了脉冲石灰石床(PLB)修复工艺,该工艺旨在通过使用颗粒状石灰石的间歇流化床和提高二氧化碳压力来解决这些问题。 PLB石灰石溶解度(LD,mg / L)和出水碱度(Alk,mg / L)与反应器压力(P_(CO_2),kPa),进水酸度(Acy,mg / L)和反应器床高(H)相关(厘米),使用能够处理10 L / min的原型。尽管水力停留时间仅为4.2-5.0分钟,但PLB工艺在6-1033 mg / L(作为CaCO_3)范围内有效中和了硫酸酸度,同时产生了高浓度的碱度(36-1086 mg / L)。根据以下模型,随着进水酸度和P_(CO_2)的增加,Alk和LD(mg / L CaCO_3)升高(p <0.001):Alk = 58 + 38.4(P_(CO_2)〜(0.5)+ 0.080(Acy)- 0.0059(P_(CO_2)〜(0.5)(Acy); LD = 55 + 38.3(P_(CO_2)〜(0.5)+ 1.08(Acy)-0.0059(P_(CO_2)〜(0.5)(Acy)。碱度降低在27.3-77.5 cm的范围内,H的降低速率有所提高(p <0.001)。P_(CO_2)的二氧化碳需求量(Q(avg)_(CO_2),L / min)增加(p <0.001)遵循模型Q(avg)_(CO_2 = 0.858(P_(CO_2)〜(0.620)),导致反应器内更大程度的pH缓冲(降低),石灰石溶解度增加和与以下有关的石灰石溶解度增加碳酸的侵蚀:相应提高浓度的废水碱度,可以进行掺混侧流处理;数值模型表明,随着废水酸度的增加以及从系统废水中回收二氧化碳并进行再循环,二氧化碳的需求量将减少。 ls证明PLB工艺能够将AMD的pH值提高到高于水解Fe〜(3+)和Al〜(3+)和沉淀Fe〜(2+)和Mn〜(2+)所需的pH。 。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号