首页> 外文期刊>Engineering with Computers >Simulations of unsteady cavitating turbulent flow in a Francis turbine using the RANS method and the improved mixture model of two-phase flows
【24h】

Simulations of unsteady cavitating turbulent flow in a Francis turbine using the RANS method and the improved mixture model of two-phase flows

机译:使用RANS方法和改进的两相流混合模型模拟混流式水轮机中非定常空化湍流

获取原文
获取原文并翻译 | 示例
       

摘要

This paper reports the simulation results for the unsteady cavitating turbulent flow in a Francis turbine using the mixture model for cavity-liquid two-phase flows. The RNG k-s turbulence model is employed in the Reynolds averaged Navier-Stokes equations in this study. In the mixture model, an improved expression for the mass transfer is employed which is based on evaporation and condensation mechanisms with considering the effects of the non-dissolved gas, the turbulence, the tension of interface at cavity and the effect of phase change rate and so on. The computing domain includes the guide vanes, the runner, and the draft tube, which is discretized with a full three-dimensional mesh system of unstructured tetrahedral shapes. The finite volume method is used to solve the governing equations of the mixture model and a full coupled method is combined into the algorithm to accelerate the solution. The computing results with the mixture model have been compared with those by the single-phase flow model as well as the experimental data. The simulation results show that the cavitating flow computation based on the improved mixture model agrees much better with experimental data than that by the single-phase flow calculation, in terms of the amplitude and dominated frequency of the pressure fluctuation. It is also observed from the present simulations that the amplitude of the pressure fluctuation at small flow rate is larger than that at large flow rate, which accords with the experimental data.
机译:本文利用腔-液两相流的混合模型,报告了混流式水轮机中非定常空化湍流的模拟结果。在这项研究中,在雷诺平均Navier-Stokes方程中采用了RNG k-s湍流模型。在混合模型中,采用了基于传质和蒸发机制的传质的改进表达式,其中考虑了不溶性气体的影响,湍流,空腔界面的张力以及相变速率和相变的影响。以此类推。计算域包括导叶,流道和引流管,它们通过非结构化四面体形状的完整三维网格系统离散化。有限体积法用于求解混合模型的控制方程,而全耦合法则用于算法中以加快求解速度。将混合模型的计算结果与单相流动模型的计算结果以及实验数据进行了比较。仿真结果表明,基于改进的混合模型的空化流计算在压力波动幅度和支配频率方面,与单相流计算相比,与实验数据吻合得更好。从目前的模拟还可以看出,小流量时的压力波动幅度大于大流量时的压力波动幅度,与实验数据吻合。

著录项

  • 来源
    《Engineering with Computers》 |2011年第3期|p.235-250|共16页
  • 作者单位

    State Key Laboratory of Hydro Science and Hydraulic Engr.,Department of Thermal Engr., Tsinghua University, Beijing 100084, China;

    State Key Laboratory of Hydro Science and Hydraulic Engr.,Department of Thermal Engr., Tsinghua University, Beijing 100084, China;

    State Key Laboratory of Hydro Science and Hydraulic Engr.,Department of Thermal Engr., Tsinghua University, Beijing 100084, China;

    State Key Laboratory of Hydro Science and Hydraulic Engr.,Department of Thermal Engr., Tsinghua University, Beijing 100084, China;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    simulation; unsteady cavitating turbulent flow; francis turbine; improved cavitation mass transfer expression; full coupled method;

    机译:模拟;非定常空化湍流混流式水轮机;改进的空化传质表达;全耦合法;
  • 入库时间 2022-08-18 02:15:47

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号