...
首页> 外文期刊>Engineering transactions >ULTIMATE LOAD AND POSTFAILURE BEHAVIOUR OF BOX-SECTION BEAMS UNDER PURE BENDING
【24h】

ULTIMATE LOAD AND POSTFAILURE BEHAVIOUR OF BOX-SECTION BEAMS UNDER PURE BENDING

机译:纯弯曲下箱形截面梁的极限载荷和破坏后行为

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

In this work the load-carrying capacity and plastic collapse mechanisms of thin-walled, rectangular and trapezoidal box-section beams subject to pure bending are investigated. The postbuckling elastic analysis is carried out using the effective width approach while the plastic buckling load is evaluated using the total strain theory. The failure of the beam is assumed to be initiated by buckling in a flange so that the flange mechanism of failure is expected. The analysis of plastic collapse mechanisms is carried out using basic assumptions of the rigid-plastic theory. The true (kinematically permissible) plastic mechanisms are taken into consideration. Three different theoretical solutions concerning the plastic moment capacity at a yield line are taken into account. Corresponding formulae for plastic moment at yield lines situated both in flanges and webs of the thin-walled beam are evaluated. The energy method is used in order to evaluate the bending moment capacity in terms of rotation angle of a global plastic hinge. The total energy of plastic deformation absorbed during rotation of the global plastic hinge is formulated and the bending moment is derived from this formula. For both rectangular and trapezoidal cross-section beams the idealized geometry of a global plastic hinge is based on the results of experimental tests. In the case of elastic buckling, the ultimate bending moment is determined approximately at the intersection point of two curves representing the bending moment in terms of the rotation angle: the postbuckling curve based upon approximate nonlinear analysis and the post-failure curve derived from the collapse mechanism analysis. Bending moment - rotation angle diagrams based on numerical results of the theoretical analysis, are compared with graphs recorded during experimental four-point tests.
机译:在这项工作中,研究了承受纯弯曲的薄壁,矩形和梯形箱形截面梁的承载力和塑性破坏机理。屈曲后的弹性分析是使用有效宽度方法进行的,而塑性屈曲的载荷是使用总应变理论进行评估的。假定梁的失效是由法兰的弯曲引起的,因此可以预期法兰的失效机理。塑性倒塌机理的分析是使用刚性-塑性理论的基本假设进行的。真正的(运动学上允许的)塑性机构已被考虑在内。考虑了关于屈服线塑性矩承载力的三种不同理论解。评估了薄壁梁的翼缘和腹板中屈服线处的塑性力矩的相应公式。使用能量法以便根据整体塑料铰链的旋转角度来评估弯矩能力。计算出在整体塑料铰链旋转过程中吸收的塑性变形的总能量,并根据该公式得出弯矩。对于矩形和梯形截面梁,整体塑料铰链的理想几何形状基于实验测试的结果。在弹性屈曲的情况下,最终弯曲力矩大约在代表旋转力矩的两条曲线的交点处确定,以旋转角度表示:基于近似非线性分析的后屈曲曲线和由塌陷得出的破坏后曲线机制分析。将基于理论分析数值结果的弯矩-旋转角图与在实验四点测试期间记录的图进行比较。

著录项

  • 来源
    《Engineering transactions》 |1996年第2期|p.229-251|共23页
  • 作者

    M. KOTELKO;

  • 作者单位

    DEPARTMENT OF STRENGTH OF MATERIALS AND STRUCTURES LODZ UNIVERSITY OF TECHNOLOGY, LODZ;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 工程力学;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号