...
首页> 外文期刊>Energy >Thermal stress management of a solid oxide fuel cell using neural network predictive control
【24h】

Thermal stress management of a solid oxide fuel cell using neural network predictive control

机译:基于神经网络预测控制的固体氧化物燃料电池热应力管理

获取原文
获取原文并翻译 | 示例
           

摘要

In SOFC (solid oxide fuel cell) systems operating at high temperatures, temperature fluctuation induces a thermal stress in the electrodes and electrolyte ceramics; therefore, the cell temperature distribution is recommended to be kept as constant as possible. In the present work, a mathematical model based on first principles is presented to avert such temperature fluctuations. The fuel cell running on ammonia is divided into five subsystems and factors such as mass/energy/momentum transfer, diffusion through porous media, electrochemical reactions, and polarization losses inside the subsystems are presented. Dynamic cell-tube temperature responses of the cell to step changes in conditions of the feed streams is investigated. The results of simulation indicate that the transient response of the SOFC is mainly influenced by the temperature dynamics. It is also shown that the inlet stream temperatures are associated with the highest long term start-up time (467 s) among other parameters in terms of step changes. In contrast the step change in fuel velocity has the lowest influence on the start-up time (about 190 s from initial steady state to the new steady state) among other parameters. A NNPC (neural network predictive controller) is then implemented for thermal stress management by controlling the cell tube temperature to avoid performance degradation by manipulating the temperature of the inlet air stream. The regulatory performance of the NNPC is compared with a PI (proportional-integral) controller. The performance of the control system confirms that NNPC is a non-linear-model-based strategy which can assure less oscillating control responses with shorter settling times in comparison to the PI controller.
机译:在高温下工作的SOFC(固体氧化物燃料电池)系统中,温度波动会在电极和电解质陶瓷中引起热应力;因此,建议将电池温度分布保持尽可能恒定。在本工作中,提出了基于第一原理的数学模型来避免这种温度波动。以氨为燃料的燃料电池分为五个子系统,并提出了诸如质量/能量/动量传递,通过多孔介质的扩散,电化学反应以及子系统内部的极化损耗等因素。研究了细胞对进料流条件的阶跃变化的动态细胞管温度响应。仿真结果表明,SOFC的瞬态响应主要受温度动态影响。还显示,在阶跃变化方面,入口流温度与其他参数中的最高长期启动时间(467 s)相关。相反,在其他参数中,燃料速度的阶跃变化对启动时间的影响最小(从初始稳态到新稳态约190 s)。然后通过控制单元管温度来实现NNPC(神经网络预测控制器)以进行热应力管理,从而避免通过控制进气流的温度而导致性能下降。将NNPC的调节性能与PI(比例积分)控制器进行比较。控制系统的性能证实了NNPC是一种基于非线性模型的策略,与PI控制器相比,它可以确保更少的振荡控制响应以及更短的建立时间。

著录项

  • 来源
    《Energy》 |2013年第1期|320-329|共10页
  • 作者单位

    Chemical Engineering Department, Faculty of Engineering, University of Malaya, Kuala Lumpur 50603, Malaysia;

    Chemical Engineering Department, Faculty of Engineering, University of Malaya, Kuala Lumpur 50603, Malaysia;

    Chemical Engineering Department, Faculty of Engineering, University of Malaya, Kuala Lumpur 50603, Malaysia;

    Chemical Engineering Department, Faculty of Engineering, University of Malaya, Kuala Lumpur 50603, Malaysia,Energy Futures Lab, Electrical Engineering Building, Imperial College London, South Kensington, London SW7 2AZ, UK;

    Chemical Engineering Department, Faculty of Engineering, University of Malaya, Kuala Lumpur 50603, Malaysia;

    Chemical Engineering Department, Faculty of Engineering, University of Malaya, Kuala Lumpur 50603, Malaysia;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Solid oxide fuel cell; Neural network predictive control; Cell-tube temperature; Thermal stress;

    机译:固体氧化物燃料电池;神经网络预测控制;电池管温度;热应力;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号