首页> 外文期刊>Energy >Biomass fast pyrolysis in a shaftless screw reactor: A 1 -D numerical model
【24h】

Biomass fast pyrolysis in a shaftless screw reactor: A 1 -D numerical model

机译:无轴螺旋反应器中生物质快速热解:一维数值模型

获取原文
获取原文并翻译 | 示例
       

摘要

The thermochemical conversion of biomass can be effective for flexible and programmable production of electric and thermal power. Only a few models have been developed so far in the literature to describe the behavior of a screw reactor system designed for biomass fast pyrolysis. The temperature profile plays a crucial role in particular for fast pyrolysis purposes. Hence, a complete heat transfer model is required to that aim. This paper is focused on numerical modeling of a shaftless screw pyrolyzer with special focus on the kinetic framework, as well as the description of heat and mass transfer phenomena. A steady-state model with constant wall temperature has been developed to generate temperature profile and conversion patterns along the reactor. Residence time distribution input has been considered to take into account non-perfect mass conveying characteristics. The model, including all the different heat flux mechanisms such as conduction, convection and radiation, is based on a four parallel Distributed Activation Energy Model. The structure includes the three major biomass pseudo-component occurring in the biomass thermal degradation, and namely cellulose hemicellulose and lignin, along with the moisture evaporation process. Numerical results have been compared with experimental data of spruce wood pellet fast pyrolysis obtained in a lab-scale screw reactor. Numerical temperature profiles for both gas and solid phase, are in good agreement with experimental data. The results obtained allow for demonstrating that the selected framework gives realistic conversion rates for all the fast pyrolysis products namely bio-oil, char, and syngas. The maximum bio-oil production from ground spruce wood has been observed at 500 °C, with yield in the range of 64%. Moreover, the results show a strong dependence on wall temperature, gas-solid heating rate, and screw geometry.
机译:生物质的热化学转化可以有效地灵活且可编程地生产电力和火力。迄今为止,在文献中仅开发了少数模型来描述设计用于生物质快速热解的螺杆反应器系统的行为。温度曲线尤其对于快速热解具有至关重要的作用。因此,为此需要一个完整的传热模型。本文着重于无轴螺杆热解器的数值模拟,特别关注动力学框架以及传热和传质现象的描述。已经开发了具有恒定壁温的稳态模型,以沿反应器生成温度曲线和转换模式。停留时间分配输入已考虑到了非完美的质量输送特性。该模型包括四个不同的热通量机制,例如传导,对流和辐射,基于四个并行的分布式活化能模型。该结构包括发生在生物质热降解中的三种主要生物质假组分,即纤维素半纤维素和木质素,以及水分蒸发过程。将数值结果与在实验室规模的螺旋反应器中获得的云杉木屑快速热解的实验数据进行了比较。气相和固相的数字温度曲线与实验数据非常吻合。获得的结果表明,所选的构架为所有快速热解产物(即生物油,焦炭和合成气)提供了实际的转化率。在500°C的温度下,观察到云杉粉木材最大的生物油产量,产率为64%。而且,结果显示出对壁温,气固加热速率和螺杆几何形状的强烈依赖性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号