首页> 外文期刊>Energy >Acquisition of full-factor trip information for global optimization energy management in multi-energy source vehicles and the measure of the amount of information to be transmitted
【24h】

Acquisition of full-factor trip information for global optimization energy management in multi-energy source vehicles and the measure of the amount of information to be transmitted

机译:收购多能源车辆中全球优化能源管理的全因素跳闸信息及衡量要传输的信息量

获取原文
获取原文并翻译 | 示例
           

摘要

Dynamic programming (DP), as a typical global optimization method, requires the prior knowledge of the future driving conditions. To standardize the DP optimizing process, a hierarchical optimization framework of "information layer -physical layer -energy layer -dynamic programming" (IPE-DP) is proposed. The trip information, as the prerequisite for implementing global optimization energy management, is acquired in the information layer. Firstly, full-factor trip information, including the vehicle speed, slope and slip rate, is acquired from three scenarios: deterministic information, information with constraints and information supported by historical data. If only the relevant constraints are available, a "drivers-vehicles-roads" full-factor constraint model is proposed to limit the trip information. Then, information entropy is introduced to measure the uncertainty of the trip information. Particularly, for information with constraints, the independence of various constraints ensures the additivity of the entropy as quantified by the drivers, vehicles and roads. Based on the above, the amount of information to be transmitted is analyzed at the end. To a certain extent, the proposed constraint model can lower the limit on data transfer rate. Furthermore, information entropy provides a theoretical basis for determining the amount of information required to optimize vehicle fuel economy and regional energy consumption. (c) 2021 Elsevier Ltd. All rights reserved.
机译:动态编程(DP)作为典型的全局优化方法,需要先前了解未来的驾驶条件。为了标准化DP优化过程,提出了“信息层 - 物理层 - 单层 - 动态编程”(IPE-DP)的分层优化框架。作为实现全局优化能量管理的先决条件,在信息层中获取行程信息。首先,从三种场景中获取包括车速,斜率和滑移率的全因素跳闸信息:确定性信息,具有历史数据支持的约束和信息的信息。如果只有相关的约束,建议“司机 - 车辆 - 道路”全因子约束模型限制了跳闸信息。然后,引入信息熵以测量行程信息的不确定性。特别是,对于具有约束的信息,各种约束的独立性可确保熵由驱动器,车辆和道路量化的熵的增加。基于上述情况,在最后分析要传输的信息量。在一定程度上,所提出的约束模型可以降低数据传输速率的极限。此外,信息熵提供了确定优化车辆燃料经济性和区域能源消耗所需的信息量的理论依据。 (c)2021 elestvier有限公司保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号