首页> 外文期刊>Energy >Performance improvement of vapor-injection heat pump system by employing PVT collector/evaporator for residential heating in cold climate region
【24h】

Performance improvement of vapor-injection heat pump system by employing PVT collector/evaporator for residential heating in cold climate region

机译:采用PVT收集器/蒸发器在寒冷气候区居住加热中的汽喷热泵系统性能改进

获取原文
获取原文并翻译 | 示例
       

摘要

The adoption of vapor injection (VI) cycle could overcome the defects of the conventional one-stage air source heat pump (ASHP) system under extremely low ambient temperature conditions. Nevertheless, the ASHP system with VI cycle still could not operate efficiently due to the low evaporating temperature in the fin-tube evaporator. For such a situation, the PVT (Photovoltaic/Thermal) collector/evaporator could reach higher evaporating temperature attributed to its physical structure, thereby improving the system COP. This study proposes the detailed mathematical model of the vapor-injection heat pump system by incorporating PVT collector/evaporator and verifies the effectiveness of the proposed system. Parametric studies have been then conducted. The proposed system can operate off-grid and its COP can reach 4.0 at the ambient temperature of -10 degrees C and the solar irradiation of 500 W/m(2). The practical electrical efficiency of PV panels achieves at 15.1%, whereas the thermal efficiency of the system is 44.8%. A hybrid control method including three modes has been also proposed based on the results for improving the system performance. The levelized cost of heat (LCOH) of this system is 0.054 $/kWh, which is 51.5% lower than that of electric heating system (0.111 $/kWh). (C) 2020 Elsevier Ltd. All rights reserved.
机译:蒸汽注入(VI)循环的采用可以在极低的环境温度条件下克服传统的一级空气源热泵(ASHP)系统的缺陷。然而,由于翅片管蒸发器中的低蒸发温度,具有VI周期的ASHP系统仍然无法有效地运行。对于这种情况,PVT(光伏/热)收集器/蒸发器可以达到较高的蒸发温度,归因于其物理结构,从而改善了系统警察。该研究提出了通过结合PVT收集器/蒸发器来提出蒸汽喷射热泵系统的详细数学模型,并验证所提出的系统的有效性。然后进行了参数研究。所提出的系统可以在-10摄氏度的环境温度下运行,其COP可以达到4.0,并且太阳照射为500 w / m(2)。 PV面板的实用电效率达到15.1%,而系统的热效率为44.8%。还提出了一种包括三种模式的混合控制方法,基于改善系统性能的结果。该系统的稳定性成本(LCOH)为0.054 $ /千瓦时,比电加热系统低51.5%(0.111 $ / kWh)。 (c)2020 elestvier有限公司保留所有权利。

著录项

  • 来源
    《Energy》 |2021年第15期|119636.1-119636.15|共15页
  • 作者单位

    Shanghai Jiao Tong Univ Inst Refrigerat & Cryogen Shanghai 200240 Peoples R China|MOE Engn Res Ctr Solar Energy & Refrigerat Beijing Peoples R China;

    Shanghai Jiao Tong Univ Inst Refrigerat & Cryogen Shanghai 200240 Peoples R China|MOE Engn Res Ctr Solar Energy & Refrigerat Beijing Peoples R China;

    Shanghai Jiao Tong Univ Inst Refrigerat & Cryogen Shanghai 200240 Peoples R China|MOE Engn Res Ctr Solar Energy & Refrigerat Beijing Peoples R China;

    Shanghai Jiao Tong Univ Inst Refrigerat & Cryogen Shanghai 200240 Peoples R China|MOE Engn Res Ctr Solar Energy & Refrigerat Beijing Peoples R China;

    Univ Ulster Ctr Sustainable Technol Sch Built Environm Newtownabbey BT37 0QB North Ireland;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Vapor injection; PVT; Direct expansion; Solar assisted heat pump; Comparative study; Economic analysis;

    机译:蒸汽注射;PVT;直接扩展;太阳能辅助热泵;比较研究;经济分析;
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号