首页> 外文期刊>Energy >A prospective study of anti-vibration mechanism of microfluidic fuel cell via novel two-phase flow model
【24h】

A prospective study of anti-vibration mechanism of microfluidic fuel cell via novel two-phase flow model

机译:微流体燃料电池通过新型两相流模型的抗振动机理预期研究

获取原文
获取原文并翻译 | 示例
           

摘要

Microfluidic fuel cell is considered as a cleaner energy conversion device, and has potential commercial applications in portable electronic devices owing to its appreciable output power, prolonged work time and low emission. In a liquid-fed cell, however, a gaseous phase is generated, and the corresponding vibration effects have a considerable influence on performance. Thus, it is important to analyse the effects of the two-phase flow and vibration on the characteristics of a microfluidic fuel cell. A two-phase computational model is constructed for a microfluidic fuel cell employing a flow-over electrode. Multiple physical processes are coupled in the model, including the hydrokinetics, electrochemical reaction kinetics, species transport, vibration field, Euler-Euler model, and phase transfer. Results indicate that the aggravated vibration intensity and frequency lead to a negative effect comprising a critical fuel crossover and delayed gaseous discharge, resulting in the cell performance degradation. Besides, increasing the contact angle and flow rate contribute to a reduction in the gaseous volume fraction, but the latter considerably sacrifices fuel utilisation and exergy efficiency. The present work provides insights for the future development of anti-vibration elements and optimised cell design, and offers a reference for the sustainable practical application of microfluidic fuel cell. (C) 2020 Elsevier Ltd. All rights reserved.
机译:微流体燃料电池被认为是清洁能量转换装置,并且由于其可观的输出功率,延长的工作时间和低发射而具有便携式电子设备中的潜在商业应用。然而,在液体喂肠细胞中,产生气相,并且相应的振动效应对性能具有相当大的影响。因此,重要的是分析两相流量和振动对微流体燃料电池的特性的影响。构建两相计算模型,用于采用流过上电极的微流体燃料电池。多种物理过程在模型中耦合,包括水力学,电化学反应动力学,物种传输,振动场,欧拉欧拉模型和相转移。结果表明,加重振动强度和频率导致临界燃料交叉和延迟气体放电的负效应,导致细胞性能降解。此外,增加接触角和流速有助于降低气体体积分数,但后者显着牺牲了燃料利用和高度效率。本作的工作为未来的抗振元件和优化的细胞设计的开发提供了见解,并为微流体燃料电池进行了可持续实际应用的参考。 (c)2020 elestvier有限公司保留所有权利。

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号