...
首页> 外文期刊>Energy >Modified sol-gel synthesis of Co_3O_4 nanoparticles using organic template for electrochemical energy storage
【24h】

Modified sol-gel synthesis of Co_3O_4 nanoparticles using organic template for electrochemical energy storage

机译:使用有机模板进行电化学储存的有机模板改性溶胶 - 凝胶合成CO_3O_4纳米粒子

获取原文
获取原文并翻译 | 示例
           

摘要

The demand for economic and efficient electrode for energy storage devices has been increased with the rapid advancements in the sustainable synthesis of active material. Herein, bioactive compounds as fuel for the synthesis of electrode material (Co3O4 NPs), were investigated. Functionalization of Co3O4 NPs via organic extract of Euphorbia cognata Boiss have not only revealed the rapid and efficient growth of active materials but also ensured an effective interaction between the fabricated electrode and electrolyte solution for charge storage reactions. The synthesized Co3O4 NPs were scrutinized for its optical, structural, compositional and chemical properties and then investigated by galvanostatic charge discharge, cyclicvoltammetry for determination of its energy storage potential. The fabricated electrode was tested at range of scan rates and current densities to evaluate its charge storage potential at different scan rates and current densities. The phytofunctionalized Co3O4 NPs offered a large accessible active sites for charge storage with capacitance of 103 Fg(-1), a maximum energy density of 1.9 Whkg(-1), and higher power density of 4.7 KWkg(-1). Thus, we have demonstrated the sustainable fabrication of electrode for energy storage applications. (C) 2020 Elsevier Ltd. All rights reserved.
机译:随着活性材料可持续合成的快速进步,对能量存储装置进行了对能源储存设备的经济高效电极的需求。在此,研究了作为合成电极材料(CO3O4 NPS)的燃料的生物活性化合物。通过大戟属Cognata Boiss的Co3O4 NPS的官能化不仅揭示了活性材料的快速有效地生长,而且确保了制造电极和电解质溶液之间的有效相互作用进行电荷储存反应。合成的CO 3 O 4 NPS被仔细检查其光学,结构,组成和化学性质,然后通过Galvanostatic电荷放电,环状电压进行研究,用于测定其能量储存潜力。在扫描速率和电流密度范围内测试制造的电极,以评估其在不同扫描速率和电流密度下的电荷存储电位。植物稳定的CO3O4 NPS为电荷存储提供了大型可接近的有源部位,电容为103 FG(-1),最大能量密度为1.9 WHKG(-1),更高的功率密度为4.7 kWkg(-1)。因此,我们已经证明了用于能量存储应用的电极的可持续制造。 (c)2020 elestvier有限公司保留所有权利。

著录项

  • 来源
    《Energy》 |2021年第1期|119502.1-119502.9|共9页
  • 作者单位

    Fatima Jinnah Women Univ Dept Environm Sci Rawalpindi Pakistan;

    Fatima Jinnah Women Univ Dept Environm Sci Rawalpindi Pakistan;

    Pittsburg State Univ Dept Chem 1701 South Broadway St Pittsburg KS 66762 USA;

    Pittsburg State Univ Dept Chem 1701 South Broadway St Pittsburg KS 66762 USA;

    Univ Manchester Dept Mat Photon Sci Inst Oxford Rd Manchester M13 9PL Lancs England|Univ Manchester Sir Henry Royce Inst Alan Turing Bldg Oxford Rd Manchester M13 9PL Lancs England;

    Univ Manchester Dept Mat Photon Sci Inst Oxford Rd Manchester M13 9PL Lancs England|Univ Manchester Sir Henry Royce Inst Alan Turing Bldg Oxford Rd Manchester M13 9PL Lancs England;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Biofuel; Energy density; Power density; Galvanostatic charge-discharge; Cyclic voltammetry;

    机译:生物燃料;能量密度;功率密度;电流电荷放电;循环伏安;
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号