...
首页> 外文期刊>Energy >Thermodynamic analysis and optimization of an oxy-combustion combined cycle power plant based on a membrane reactor equipped with a high-temperature ion transport membrane ITM
【24h】

Thermodynamic analysis and optimization of an oxy-combustion combined cycle power plant based on a membrane reactor equipped with a high-temperature ion transport membrane ITM

机译:基于膜反应器的氧气燃烧组合循环发电厂的热力学分析与优化,具有高温离子输送膜ITM

获取原文
获取原文并翻译 | 示例
           

摘要

This paper presents an advanced zero emission power plant (AZEP) which is a combined cycle power plant with a membrane reactor equipped with a high-temperature ion transport membrane (ITM). The membrane reactor, which is used as a replacement for a combustor in the gas turbine, combines three functions: combustion of fuel, oxygen separation from the air in the ITM, and heating of the oxygen-depleted air. Due to the membrane reactor, the AZEP does not need an energy-consuming external air separation unit, which is a significant advantage over other types of power plants which utilize oxy-combustion technology. The presented thermodynamic model for AZEP with an advanced numeric model of the ITM allows the user to perform thermodynamic analyses for a wide range of AZEP operating parameters and to select their optimal values, without the need to determine the geometric parameters of the ITM and heat exchangers. The obtained results allow one to indicate the basic features of this carbon capture technology. The selection of AZEP operating parameters is related to the balance between the power plant's efficiency maximization and the limitation of the ITM and heat exchangers surface areas. This manuscript also presents an analysis of the possible AZEP plant development. The development model of the E-AZEP plant assumes a number of improvements in the parameters of the ITM and the entire membrane reactor, with respect to the AZEP plant basic model. The ITM assumes an improvement in the ionic conductivity (δ_(ion)) by approx. 45%, by changing the value of the conductivity coefficient (C_2) as well as increasing the maximum operating temperature of the membrane from 900 °C to 1000 °C. The work demonstrated the great influence of the membrane surface. In the model of the membrane reactor, a higher flue gas temperature was assumed at the combustion chamber outlet, equal to t_(1g) = 1600 °C, which together with the assumption of temperature approximation ΔT_(he.HHX) = 20 K gives an air temperature t_(3a) = 1580 °C. With the current technological possibilities, AZEP plants are competitive compared to alternative solutions, but they do not have a significant advantage over them. However, overcoming the presented limitations may allow us to achieve an advantage in terms of achieved efficiency compared to alternative CO_2 capture technologies. Achieving the air temperature at the inlet to the expander, at a level close to the temperatures used in J-class gas turbines (E-AZEP plant case), allows for a decrease in the efficiency when compared to modern combined cycle power plants, at a level of 3% points.
机译:本文介绍了一个先进的零发射电厂(AZEP),该零级发射电厂(AZEP)是一种综合循环发电厂,具有配备有高温离子输送膜(ITM)的膜反应器。膜反应器用作燃气轮机中燃烧器的替代品,结合了三种功能:燃料燃烧,从ITM中的空气中的氧气分离,并加热氧耗尽的空气。由于膜反应器,AzeP不需要消耗的外部空气分离单元,这是利用氧气燃烧技术的其他类型发电厂的显着优势。 Azep的呈现热力学模型具有高级数字模型的ITM允许用户对广泛的Azep操作参数进行热力学分析,并选择其最佳值,而无需确定ITM和热交换器的几何参数。所获得的结果允许其中表明该碳捕获技术的基本特征。选择AZEP操作参数与电厂效率最大化与ITM和热交换器表面区域的限制之间的平衡有关。该手稿还提出了对可能的紫杉植物开发的分析。 E-Azep工厂的开发模型对于紫杉(Azep植物基本模型)假设ITM和整个膜反应器的参数的百分比改善。 ITM假设通过大约改善离子电导率(Δ_(离子))。通过改变电导率系数(C_2)的值以及将膜的最大工作温度从900°C增加至1000°C来改变45%。工作表明了膜表面的影响很大。在膜反应器的模型中,在燃烧室出口处假设较高的烟道气温度,等于T_(1g)= 1600℃,其与温度近似的假设一起Δt_(hhhx)= 20k给出空气温度T_(3a)= 1580°C。凭借目前的技术可能性,与替代解决方案相比,Azep植物具有竞争力,但它们对它们没有显着的优势。然而,与替代CO_2捕获技术相比,克服所呈现的局限可以允许我们在实现效率方面实现优势。在接近J级燃气轮机(E-AZEP植物盒)的温度接近膨胀机的水平下实现空气温度,与现代联合循环发电厂相比,允许降低效率水平为3%。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号