首页> 外文期刊>Energy >Using atmospheric inputs for Artificial Neural Networks to improve wind turbine power prediction
【24h】

Using atmospheric inputs for Artificial Neural Networks to improve wind turbine power prediction

机译:利用大气输入用于人工神经网络,提高风力涡轮机电力预测

获取原文
获取原文并翻译 | 示例
           

摘要

A robust machine learning methodology is used to generate a site-specific power-curve of a full-scale isolated wind turbine operating in an atmospheric boundary layer to drastically improve the power predictions, and, thus, the forecasting of the monthly energy production estimates. The study has important implication in measuring the financial feasibility of wind farms by improving the accuracy of monthly energy estimates. The significance of the study is that atmospheric stability and air-density are accounted in the power predictions of the wind turbine. Artificial Neural Networks (ANN) machine learning approach is used to generate multi-parameter input models to estimate the power produced by the wind turbine. The ANN model in this study uses Feed Forward Back Propagation (FFBP) algorithm. The power- and wind-data is obtained from a 2.5 MW wind turbine that has a Meteorological tower located 900 m Southwest of the wind turbine in Kirkwood, Iowa, USA The study investigates the role of atmospheric boundary-layer metrics - Wind Speed, Density (a measure of stratification), Richardson Number, turbulence intensity, and wind shear as input parameters into the ANN model. The study investigates the influence of FFBP ANN hyper-parameters on the power prediction accuracy. Comparison of the FFBP ANN model to other power curve correction techniques demonstrated an improvement in the Mean Absolute Error (MAE) of 40% when compared to the density correction (the next closest). The five-parameter 4-layer FFBP ANN has an average energy production error of 0.4% for the nine months while the IEC this error is -3.7% and for the air density correction the error is -1.9%, respectively. Finally, the study determines the performance of the FFBP ANN model for different atmospheric stability regimes (Unstable, Stable, Strongly Stable, Strongly Unstable and Neutral) classified using two criterions -Richardson number and Turbulence intensity. The largest MAE occurs during the strongly stable regime of the atmospheric boundary layer for both criteria.
机译:强大的机器学习方法用于生成在大气边界层中操作的全尺寸隔离风力涡轮机的站点特定电源曲线,以大大提高功率预测,并因此预测每月能源生产估计。该研究通过提高月度能源估计的准确性来衡量风电场的财务可行性。该研究的重要性是风力涡轮机的功率预测中的大气稳定性和空气密度。人工神经网络(ANN)机器学习方法用于生成多参数输入模型,以估计风力涡轮机产生的功率。本研究中的ANN模型使用馈送前后传播(FFBP)算法。从爱荷华州爱荷华州柯克伍德的风力涡轮机900米西南最具位于900米西南部的气象塔,研究调查了大气边界层度量 - 风速,密度的作用(分层测量),Richardson号,湍流强度和风剪切为ANN模型中的输入参数。该研究调查了FFBP ANN超参数对功率预测精度的影响。 FFBP ANN模型与其他功率曲线校正技术的比较表明,与密度校正相比(下一个最近)相比,平均绝对误差(MAE)的改善。五参数4层FFBP ANN的平均能量产生误差为0.4%,而IEC此误差为-3.7%,对于空气密度校正,误差分别为-1.9%。最后,该研究决定了FFBP ANN模型的性能,用于不同的大气稳定性制度(不稳定,稳定,强烈稳定,强烈的不稳定,不稳定,不稳定,中立),使用两个标准进行分类,用于一项标准 - 汽轮码和湍流强度。最大的MAE在两个标准的大气边界层的强稳定性方案中发生。

著录项

  • 来源
    《Energy》 |2020年第1期|116273.1-116273.12|共12页
  • 作者单位

    Department of Mechanical Engineering University of Texas at San Antonio Laboratory of Turbulence Sensing and Intelligence Systems San Antonio TX USA;

    Department of Mechanical Engineering University of Texas at San Antonio Laboratory of Turbulence Sensing and Intelligence Systems San Antonio TX USA;

    Department of Mechanical Engineering University of Texas at San Antonio USA;

    Department of Mechanical Engineering University of Texas at San Antonio USA;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    ANN; Wind energy; Power predictions; Atmospheric boundary layer; Turbulence; Wind turbine;

    机译:安;风能;权力预测;大气边界层;湍流;风力涡轮机;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号