首页> 外文期刊>Energy >Improvement of magnetic and cryogenic energy preservation performances in a feeding-power-free superconducting magnet system for maglevs
【24h】

Improvement of magnetic and cryogenic energy preservation performances in a feeding-power-free superconducting magnet system for maglevs

机译:用于Maglevs馈电无功超导磁体系统中的磁性和低温能量保存性能的改进

获取原文
获取原文并翻译 | 示例
           

摘要

This work relates to improvement of magnetic and cryogenic energy preservation performances in an onboard high-temperature superconducting magnet system used in linear synchronous motors for ultra-high speed maglevs. Since maglevs remove all the physical contacts to the ground, the wireless on-board feeding power is rather limited especially for superconducting subassemblies. And it has become one of the development bottlenecks. For the magnet system, realization of on-board feeding-power free is pivotal, which is regarding to two important enetgy conversions: electrical to magnetic energy by persistent-current mode of superconductivity, and latent heat to effective cooling (or cryogenic) energy by α-β phase transition of solid nitrogen (SN_2) in the system. Improvements of the two energy conversions are the main work. Firstly, model and numerical approach of persistent-current mode are proposed, followed by simulation of SN_2 cooling. Then performances of persistent-current mode and cryogenic energy preservation are reported. Energy conversion efficiency is also analyzed for a strategy to improve cooling performance. The sttategy successfully extends cryogenic energy preservation time to 8.83 h and suppresses thermal non-uniformity to <0.1 K. The enhanced cooling performance is also reflected in a prolonged persistent-cut rent mode lasting for 8.17 h. The work demonstrates the applicability of the magnet system.
机译:这项工作涉及在用于超高速Maglevs的线性同步电动机中使用的板载高温超导磁体系统中的磁性和低温能量保存性能的改进。由于Maglevs将所有物理触点移除到地,因此无线板载馈电功率相当有限,特别是对于超导子组件。它已成为发展瓶颈之一。对于磁体系统,无枢转的载馈电源的实现,这是关于两个重要的膨胀转化:通过持续电流的超导模式和潜热的电能与有效的冷却(或低温)能量的电力固体氮(SN_2)在系统中的α-β相转变。两个能量转化的改进是主要工作。首先,提出了持久电流模式的模型和数值方法,然后仿真SN_2冷却。然后报道了持久电流模式和低温能量保存的性能。还分析了能量转换效率以提高冷却性能的策略。 STT造砖成功将低温能量保存时间延伸至8.83h,抑制了<0.1k的热不均匀性。增强的冷却性能也在延长8.17小时的延长持续换租模式中反映。该工作展示了磁铁系统的适用性。

著录项

  • 来源
    《Energy》 |2020年第1期|116403.1-116403.11|共11页
  • 作者单位

    School of Electronic Information and Electrical Engineering Shanghai Jiao Tong University Shanghai 200240 China;

    School of Electronic Information and Electrical Engineering Shanghai Jiao Tong University Shanghai 200240 China;

    School of Electronic Information and Electrical Engineering Shanghai Jiao Tong University Shanghai 200240 China;

    School of Electronic Information and Electrical Engineering Shanghai Jiao Tong University Shanghai 200240 China;

    CRRC Changchun Railway Vehicles Co. Ltd. Changchun 130062 China;

    School of Electronic Information and Electrical Engineering Shanghai Jiao Tong University Shanghai 200240 China;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Energy preservation; Energy conversion; Persistent current; Superconducting magnet; Cryogenics; Maglev;

    机译:能量保存;能量转换;持续电流;超导磁铁;低温;Maglev.;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号