首页> 外文期刊>Energy >Thermodynamic analysis and optimization of liquefied air energy storage system
【24h】

Thermodynamic analysis and optimization of liquefied air energy storage system

机译:液化空气储能系统的热力学分析与优化

获取原文
获取原文并翻译 | 示例
           

摘要

A large proportion of new energy sources, such as wind and solar energy, are unable to be directly connected to the grid owing to their instability characteristics. To solve this problem, power storage technologies, such as large-scale compressed air energy storage (CAES) technology, have become more important and are playing an increasingly important role. Liquefied air energy storage (LAES) technology is a new type of CAES technology with high power storage density, which can solve the problem of large air storage devices that other CAES systems need to configure. In this study, thermodynamic models of the main components of an LAES system are first established, and the main components of the system are analyzed and optimized. On this basis, the thermodynamic model of an LAES system is established, and the thermodynamic analysis of the system is carried out by means of exergy analysis. The analyzed results show that an LAES system configured with four-stage compression and four-stage expansion has good comprehensive thermodynamic performance. The storage pressure and release pressure of the system are determined to be 15 and 7.1 MPa, respectively, and the air temperature before the pressure reducing valve of liquefaction is 93 K. Increasing the adiabatic efficiency of main components of the LAES system can reduce their exergy loss, thereby reducing the exergy loss of the whole system and improving its energy storage efficiency. (C) 2019 Elsevier Ltd. All rights reserved.
机译:由于其不稳定特性,大量的新能源(例如风能和太阳能)无法直接连接到电网。为了解决这个问题,蓄电技术,如大规模压缩空气储能(CAES)技术,变得更加重要,并且正在发挥越来越重要的作用。液化空气储能(Laes)技术是一种具有高蓄电密度的新型CAES技术,可以解决其他CAES系统需要配置的大型空气存储设备的问题。在本研究中,首先建立了Laes系统的主要部件的热力学模型,分析并优化了系统的主要部件。在此基础上,建立了Laes系统的热力学模型,通过透视分析进行了系统的热力学分析。分析结果表明,由四级压缩和四级扩展配置的Laes系统具有良好的全面热力学性能。系统的储存压力和释放压力分别为15和7.1MPa,并且在液化的减压阀之前的空气温度为93k。提高Laes系统的主要成分的绝热效率可以减少其漏洞损失,从而降低整个系统的丧失丧失,提高其储能效率。 (c)2019 Elsevier Ltd.保留所有权利。

著录项

  • 来源
    《Energy》 |2019年第15期|162-173|共12页
  • 作者单位

    North China Elect Power Univ Sch Energy Power & Mech Engn Beijing 102206 Peoples R China;

    North China Elect Power Univ Sch Energy Power & Mech Engn Beijing 102206 Peoples R China;

    North China Elect Power Univ Sch Energy Power & Mech Engn Beijing 102206 Peoples R China;

    North China Elect Power Univ Sch Energy Power & Mech Engn Beijing 102206 Peoples R China;

    North China Elect Power Univ Sch Energy Power & Mech Engn Beijing 102206 Peoples R China;

    North China Elect Power Univ Sch Energy Power & Mech Engn Beijing 102206 Peoples R China;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    LAES system; Thermodynamic analysis; Optimization; Exergy analysis;

    机译:Laes System;热力学分析;优化;漏洞分析;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号