...
首页> 外文期刊>Energy >Active flow control for power enhancement of vertical axis wind turbines: Leading-edge slot suction
【24h】

Active flow control for power enhancement of vertical axis wind turbines: Leading-edge slot suction

机译:主动流控制,用于增强垂直轴风力涡轮机的功率:前沿槽吸入

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

Vertical axis wind turbines (VAWTs) suffer from a poor power performance at low tip speed ratios, where their blade aerodynamics are dominated by unsteady separation and dynamic stall. Therefore, to enhance their aerodynamic performance, separation control is highly desired. The present study intends to suppress the flow separation on VAWTs using boundary layer suction through a slot located near the blade leading edge. High-fidelity computational fluid dynamics simulations extensively validated with experiments are employed. A characterization of the impact of the suction amplitude, 0.5% ≤ As ≤ 10%, and the suction location, 8.5 ≤ Xs/c ≤ 28.5, is performed. The dependency of the obtained power gain on operating conditions, i.e. tip speed ratio, 2.5 ≤ λ ≤ 3.5, Reynolds number, 0.51 × 10~5 ≤ Re_c ≤ 2.78 × 10~5, and turbulence intensity, 1%≤TI≤25%, is studied. The results show that applying suction along the chordwise extent of the laminar separation bubble (LSB) can prevent its bursting, eliminate/postpone its formation, avoid the formation of the dynamic stall vortex and trailing-edge roll-up vortex, and delay the incipient trailing-edge separation. This will significantly increase the blade lift force, decrease the drag force, delay the stall angle and suppress the aerodynamic load fluctuations. For the reference turbine and for A_s = 0.5% and X_s/c = 8.5%, the power coefficient at λ of 2.5, 3.0 and 3.5 is enhanced by 247%, 83% and 24%, respectively. The suction location is critical while a minimum amplitude, e.g. As = 0.5%, suffices. The optimal suction location is insensitive to TI, weakly sensitive to λ while comparatively more sensitive to Re_c.
机译:垂直轴风力涡轮机(VAWT)在低叶尖速比下的动力性能不佳,其中叶片的空气动力学主要是不稳定的分离和动态失速。因此,为了提高其空气动力学性能,非常需要分离控制。本研究旨在通过边界层吸力通过位于叶片前缘附近的缝隙来抑制VAWT上的流动分离。采用了经过实验广泛验证的高保真计算流体动力学模拟。表征吸力幅度(0.5%≤As≤10%)和吸力位置(8.5≤Xs / c≤28.5)的影响。所获得的功率增益与工作条件的相关性,即叶尖速比2.5≤λ≤3.5,雷诺数0.51×10〜5≤Re_c≤2.78×10〜5,湍流强度1%≤TI≤25% ,正在研究中。结果表明,沿层流分离气泡(LSB)的弦向方向施加吸力可防止其破裂,消除/推迟其形成,避免动态失速涡旋和后缘上卷涡旋的形成,并延缓初发后缘分离。这将显着增加叶片升力,减小阻力,延迟失速角并抑制空气动力负荷的波动。对于参考涡轮机,对于A_s = 0.5%和X_s / c = 8.5%,λ处的功率系数2.5、3.0和3.5分别提高了247%,83%和24%。吸气位置至关重要,而最小幅度例如As = 0.5%就足够了。最佳抽吸位置对TI不敏感,对λ较弱,而对Re_c则较敏感。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号