...
首页> 外文期刊>Energy >Design and optimization of a novel high temperature heat exchanger for waste heat cascade recovery from exhaust flue gases
【24h】

Design and optimization of a novel high temperature heat exchanger for waste heat cascade recovery from exhaust flue gases

机译:新型高温热交换器的设计和优化,用于从废气中回收级联废热

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

The waste heat of high temperature exhaust flue gases is widely distributed in many industrial processes. Recovery of waste heat is of great significance to energy saving and sustainability. In this paper, a novel high temperature heat exchanger with hybrid enhancement technologies is proposed to improve waste heat recovery efficiency based on the cascade recovery and utilization method. Algorithm for HTHE structural design and optimization is developed and verified according to the experimental results. Heat transfer and pressure drop performance of the proposed HTHE are estimated by using the algorithm. The results show that the effectiveness of the proposed HTHE increases as the gas temperature increases and mass flow rate decreases. Average effectiveness of the proposed HTHE and temperature of preheated air are 12.5% and 85.8 degrees C higher than those of traditional HTHE with additional 70.0% and 22.0% pressure drop on air and gas sides, respectively. The structural optimization of the proposed HTHE is carried out and it shows that the optimized HTHE has better heat transfer capacity and comprehensive performance under identical pressure drop, increasing effectiveness by 12.6% without enlarging pressure drop compared with the non-optimized HTHE. (C) 2018 Elsevier Ltd. All rights reserved.
机译:高温废气的废热在许多工业过程中广泛分布。废热的回收对于节能和可持续发展具有重要意义。本文提出了一种采用混合强化技术的新型高温换热器,以级联回收利用的方式提高废热回收效率。根据实验结果,开发并验证了用于HTHE结构设计和优化的算法。使用该算法估计了拟议的HTHE的传热和压降性能。结果表明,所提出的HTHE的有效性随着气体温度的升高和质量流量的降低而提高。拟议的HTHE和预热空气温度的平均效率分别比传统HTHE的平均效率高12.5%和85.8摄氏度,空气和气体侧的压降分别增加70.0%和22.0%。对提出的HTHE进行了结构优化,结果表明,与未优化的HTHE相比,优化的HTHE在相同的压降下具有更好的传热能力和综合性能,在不增大压降的情况下提高了效率12.6%。 (C)2018 Elsevier Ltd.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号