首页> 外文期刊>Energy & fuels >Oxide-Free, Catalyst-Coated, Fuel-Soluble, Air-Stable Boron Nanopowder as Combined Combustion Catalyst and High Energy Density Fuel
【24h】

Oxide-Free, Catalyst-Coated, Fuel-Soluble, Air-Stable Boron Nanopowder as Combined Combustion Catalyst and High Energy Density Fuel

机译:混合燃烧催化剂和高能密度燃料的无氧化物,催化剂涂层,燃料可溶,空气稳定的硼纳米粉

获取原文
获取原文并翻译 | 示例
       

摘要

Elemental boron has one of the highest volumetric heats of combustion known and is therefore of interest as a high energy density fuel. The fact that boron combustion is inherently a heterogeneous process makes rapid efficient combustion difficult. An obvious strategy is to increase the surface area/volume ratio by decreasing the particle size. This approach is limited by the fact that boron forms a ~0.5 nm thick native oxide layer, which not only inhibits combustion, but also consumes an increasing fraction of (he particle mass as the size is decreased. Another strategy might be to coat the boron particles with a material (e.g., catalyst) to enhance combustion of either the boron itself or of a hydrocarbon carrier fuel. We present a simple, scalable, one-step process for generating air-stable boron nanoparticles that are unoxidized, soluble in hydrocarbons, and coated with a combustion catalyst. Ball milling is used to produce ~50 nm particles, protected against room temperature oxidation by oleic acid functionalization, and optionally coaled with catalyst. Scanning and transmission electron microscopy and dynamic light scattering were used to investigate size distributions, with X-ray photoelectron spectroscopy to probe the boron surface chemistry.
机译:元素硼具有已知的最高燃烧体积热之一,因此作为高能量密度的燃料而受到关注。硼燃烧固有地是非均质过程,这一事实使得快速有效燃烧变得困难。一个明显的策略是通过减小粒径来增加表面积/体积比。这种方法受到以下事实的限制:硼形成一个约0.5 nm厚的天然氧化物层,该氧化物层不仅抑制燃烧,而且随着粒径的减小而消耗的颗粒质量分数增加。另一种策略可能是涂覆硼含有一种能增强硼本身或烃类燃料燃烧的材料(例如催化剂)的颗粒。我们提出了一种简单,可扩展,一步式的方法来生成未氧化,可溶于碳氢化合物的空气稳定的硼纳米颗粒,球磨用于产生〜50 nm的颗粒,通过油酸官能化防止室温氧化,并可选地与催化剂结合,使用扫描和透射电子显微镜以及动态光散射研究尺寸分布,用X射线光电子能谱仪探测硼的表面化学。

著录项

  • 来源
    《Energy & fuels》 |2009年第6期|6111-6120|共10页
  • 作者单位

    Department of Chemistry, University of Utah, 315 S. 1400 E. Rm. 2020, Salt Lake City, Utah 84112;

    Department of Chemistry, University of Utah, 315 S. 1400 E. Rm. 2020, Salt Lake City, Utah 84112;

    Department of Chemistry, University of Utah, 315 S. 1400 E. Rm. 2020, Salt Lake City, Utah 84112;

    Department of Chemistry, University of Utah, 315 S. 1400 E. Rm. 2020, Salt Lake City, Utah 84112;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

  • 入库时间 2022-08-18 00:42:20

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号