...
首页> 外文期刊>Energy & fuels >Optimizing H_2 Production from Waste Tires via Combined Steam Gasification and Catalytic Reforming
【24h】

Optimizing H_2 Production from Waste Tires via Combined Steam Gasification and Catalytic Reforming

机译:通过蒸汽气化和催化重整相结合优化废轮胎的H_2生产

获取原文
获取原文并翻译 | 示例
           

摘要

The disposal of waste tires represents a relevant problem within the waste management strategy of the European community: more than 300 000 000 tires are estimated to reach their end of life each year in the 27 member states of the European Union and comparable amounts are found in North America, Latin America, Asia, and the Middle East. The global total is ~1000000000 and rising each year. (Source: European Tyre Recycling Association (ETRA), 2006.) It is well-known that scrap tires possess high volatiles and low ash contents, together with a heating value that is higher than coal and biomass. These properties make them an ideal material for alternative thermal processes, such as pyrolysis and gasification, which can be finalized both to energy and material recovery. Within this frame, the present work is related to experimental tests and has obtained results of a combined process of scrap tire steam gasification and syngas catalytic reforming, with the aim of exploring the possible utilization of syngas for fuel cell applications. Four catalysts have been used for the experimental tests: two natural mineral products (olivine and dolomite) and two commercial nickel-based catalysts. Experimental data show that whether olivine or dolomite is used directly into the reactor to carry out the steam gasification, the char and gas yields increase with respect to the sole tire gasification (the char production varies from 41.2% w/w without catalysts to 59% w/w and 47.9% w/w, using olivine and dolomite, respectively; the gas production varies from 60.8% w/w for the sole tire gasification to 63.5% w/w with olivine and 84% w/w with dolomite). Then, while the olivine shows a stronger effect on the char production, the dolomite seems to be more effective on die gas yield. Moreover, both the catalysts promote a higher hydrogen production, which varies from 51.6 vol % for the sole tire gasification to 65.6 vol % and 57 vol % using, respectively, dolomite or olivine, basically because of the enhanced cracking of methane and the other hydrocarbons (the methane content decreases from 27.6 vol % for the sole tire gasification to 11.3 vol % and 20.8 vol %, using dolomite or olivine, respectively). Regarding both dry and steam reforming, the experimental tests show that the catalytic step, tested by varying the temperature, the catalytic substrates, and the reactive atmosphere, promote the production of a high hydrogen-rich gas, already at the lower tested temperature. It has been seen that the stronger effect for the increase of hydrogen content is for steam reforming condition and using a commercial nickel catalyst instead of Ni/olivine: under such conditions, the hydrogen content increases, from 51.6 vol % before the reforming up to 78 vol % at 650 ℃. With regard to gas production, a strong increase of the flow, mostly due to the effect of the cracking reactions, is registered as well and, more in detail, the gas production increases from 0.8 m_3 kg~(-1) fed, before the reforming, up to 1.0 m_3 kg~(-1) fed and 1.S m_3 kg~(-1) fed, respectively, for dry and steam reforming at 7S0 ℃ and using Ni olivine catalyst, and up to 1.12 m_3 kg~(-1) fed and 1.91 m_3 kg~(-1) fed, for dry and steam reforming at 750 ℃, respectively, and using a commercial Ni catalyst The adopted operating conditions allow one to obtain an appreciable amount of char, whose high carbon content suggest its further exploitation both as activated carbon (after activation process) and as a carbon source for synthesis reactions.
机译:废旧轮胎的处置是欧洲共同体废物管理战略中的一个相关问题:据估计,在欧盟27个成员国中,每年有超过300亿条轮胎达到其使用寿命,而在欧洲,则有相当数量的废旧轮胎。北美,拉丁美洲,亚洲和中东。全球总数约为10亿,并且每年都在增加。 (来源:欧洲轮胎回收协会(ETRA),2006。)众所周知,废轮胎具有较高的挥发物和较低的灰分含量,并且其热值高于煤炭和生物质。这些特性使它们成为热解和气化等替代热工艺的理想材料,可以最终确定其能量和材料回收率。在此框架内,当前的工作与实验测试有关,并获得了废轮胎蒸汽气化和合成气催化重整的组合过程的结果,目的是探索合成气在燃料电池应用中的可能利用。四种催化剂已用于实验测试:两种天然矿物产品(橄榄石和白云石)和两种商用镍基催化剂。实验数据表明,无论是将橄榄石还是白云石直接用于反应器中进行蒸汽气化,相对于唯一轮胎气化,焦炭和气体产率都会增加(无催化剂时焦炭产量从41.2%w / w到59%不等) w / w和47.9%w / w,分别使用橄榄石和白云石;产气量从单个轮胎气化的60.8%w / w到橄榄石的63.5%w / w和白云石的84%w / w)。然后,尽管橄榄石对焦炭的产生有更强的影响,但白云石似乎对脱模气产率更有效。此外,两种催化剂均能促进更高的产氢量,从单胎气化的51.6%(体积)到分别使用白云石或橄榄石的65.6%(体积)和57%(体积),主要是因为甲烷和其他碳氢化合物的裂化作用增强。 (使用白云石或橄榄石分别将甲烷含量从单独轮胎气化的27.6%(体积)降低到11.3%(体积)和20.8%(体积))。关于干重整和蒸汽重整,实验测试表明,通过改变温度,催化底物和反应性气氛进行测试的催化步骤,已经在较低的测试温度下促进了高富氢气体的产生。可以看出,增加氢含量的更强效果是在蒸汽重整条件下,使用市售的镍催化剂代替镍/橄榄石:在这种条件下,氢含量从重整前的51.6%(体积)增加到78% 650℃下的体积%。在产气方面,主要由于裂化反应的影响,流量也有明显增加,更详细地说,在进料之前产气量从进料的0.8 m_3 kg〜(-1)增加。在7S0℃并使用镍橄榄石催化剂进行干重整和蒸汽重整时,分别进料至1.0 m_3 kg〜(-1)和1.S m_3 kg〜(-1)重整,最高至1.12 m_3 kg〜( -1)进料和1.91 m_3 kg〜(-1)进料,分别用于在750℃进行干重和蒸汽重整,并使用商业化的Ni催化剂。建议将其进一步用作活性炭(在活化过程之后)和用作合成反应的碳源。

著录项

  • 来源
    《Energy & fuels》 |2011年第mayajuna期|p.2232-2241|共10页
  • 作者单位

    UTTP NANO-C. R. ENEA Portici, Localita Granatello - 800S5, Portdci (NA), Italy;

    UTVALAMB 1DR C. R. ENEA Bologna, Via Martin di Monte Sole, 4 - 40129, Bologna, Italy;

    UTTTRI RIF- C. R. ENEA Trisaia SS Jonica 106, km 419.S - 75026, Rotondella (MT), Italy;

    UTVALAMB 1DR C. R. ENEA Bologna, Via Martin di Monte Sole, 4 - 40129, Bologna, Italy;

    UTTTRI RIF- C. R. ENEA Trisaia SS Jonica 106, km 419.S - 75026, Rotondella (MT), Italy;

    UTTTRI RIF- C. R. ENEA Trisaia SS Jonica 106, km 419.S - 75026, Rotondella (MT), Italy;

    UTTP NANO-C. R. ENEA Portici, Localita Granatello - 800S5, Portdci (NA), Italy;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号