...
首页> 外文期刊>Energy & fuels >Dynamic Modeling of the Coproduction of Liquid Fuels and Electricity from a Hybrid Solar Gasifier with Various Fuel Blends
【24h】

Dynamic Modeling of the Coproduction of Liquid Fuels and Electricity from a Hybrid Solar Gasifier with Various Fuel Blends

机译:具有多种燃料混合物的混合太阳能气化炉联产液体燃料和电力的动态建模

获取原文
获取原文并翻译 | 示例
           

摘要

A sensitivity analysis is presented of the energetic and environmental performance of a hybridized solar gasification, coal-to-liquids (CTL_(sol)) polygeneration system using a pseudo-steady-state model outlined in a recently submitted paper. The hybrid CTL_(sol) system was assumed to be integrated with pressurized (upgraded) syngas and O_2 storage to reduce the impact of solar resource transience on the unit operations downstream of the hybrid gasifier. Reported is the sensitivity of the CTL_(sol) system's energetic and environmental performance to variations in gasification reactor pressure, to turn-down in the fuel feed rate to the hybrid gasifier, to the integration of an indirectly irradiated hybrid natural gas dry or steam reforming system, and to the proportion of biomass cogasified with the coal. The energetic performance of the CTL_(sol) system was shown to be only weakly sensitive to the solar hybrid gasifier pressure. The incorporation of a natural gas steam reformer within the hybrid solar coal gasifier was shown to reduce by an additional 15% the process' mine-to-tank CO_2-e emissions relative to the configuration without the co-reformer. However, the addition of the co-reformer to the solar hybrid gasifier also reduced the solar share of the system output to 17% from 20%. The use of a dry reforming process was found to enable similar energetic and environmental performance characteristics to the steam reforming process. Mine-to-tank greenhouse gas emissions parity with diesel production from mineral sands can be achieved with a 30% biomass cogasification fraction, by weight, in a solar hybrid cogasifier, while 45 wt % biomass is required for the nonsolar equivalent. This coal-biomass solar cogasification system also achieved a 22% improvement in energetic productivity relative to the nonsolar reference system. Mine-to-tank CO_2-e emissions of 0 was found to be achievable with a biomass cogasification fraction of 60 wt %, while the nonsolar equivalent was found to require a biomass fraction of 70 wt % to enable the same outcome. Reducing the amount of biomass to achieve a given environmental target is important given that biomass is typically three to four times more expensive than coal.
机译:使用最近提交的论文中概述的拟稳态模型,对混合太阳能气化煤制油(CTL_(sol))多联产系统的能量和环境性能进行了敏感性分析。假设混合式CTL_(sol)系统与加压(升级)合成气和O_2存储集成在一起,以减少太阳能瞬变对混合式气化炉下游装置运行的影响。报告的是CTL_(sol)系统的能量和环境性能对气化反应堆压力变化,降低向混合气化炉的燃料进料速率,对间接辐照混合天然气干燥或蒸汽重整的集成的敏感性系统,以及与煤共气化的生物质的比例。结果表明,CTL_(sol)系统的能量性能仅对太阳能混合气化炉压力敏感。与没有使用共重整器的配置相比,在混合太阳能煤气化炉中并入天然气蒸汽重整器可将流程的矿井到槽CO_2-e排放量减少15%。但是,将共重整器添加到太阳能混合气化炉中也将系统输出的太阳能份额从20%降低到17%。发现使用干重整工艺能够实现与蒸汽重整工艺相似的能量和环境性能特征。在太阳能混合式气化炉中,按重量计30%的生物质可气化比例可实现与矿物砂柴油生产成的矿池到坦克的温室气体排放量,而非太阳能当量则需要45 wt%的生物质。与非太阳能参考系统相比,这种煤-生物质太阳能共气化系统的能源生产率也提高了22%。发现当生物质共气化率为60 wt%时,矿池CO_2-e排放量可达到0,而非太阳能当量需要70 wt%的生物质率才能实现相同的结果。鉴于生物质通常比煤炭贵三至四倍,因此减少生物量以实现给定的环境目标非常重要。

著录项

  • 来源
    《Energy & fuels》 |2013年第mayajuna期|3556-3569|共14页
  • 作者单位

    Centre for Energy Technology,The University of Adelaide, Adelaide SA 5005, Australia,School of Mechanical Engineering,The University of Adelaide, Adelaide SA 5005, Australia;

    Centre for Energy Technology,The University of Adelaide, Adelaide SA 5005, Australia,School of Chemical Engineering, The University of Adelaide, Adelaide SA 5005, Australia;

    Centre for Energy Technology,The University of Adelaide, Adelaide SA 5005, Australia,School of Mechanical Engineering,The University of Adelaide, Adelaide SA 5005, Australia;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号