首页> 外文期刊>Energy & fuels >Effect of Unsaturated Bond on NO_x and PAH Formation in n-Heptane and 1-Heptene Triple Flames
【24h】

Effect of Unsaturated Bond on NO_x and PAH Formation in n-Heptane and 1-Heptene Triple Flames

机译:不饱和键对正庚烷和1-庚烯三重火焰中NO_x和PAH形成的影响

获取原文
获取原文并翻译 | 示例
       

摘要

Various engine and shock tube studies have observed increased NO_x emissions from the combustion of biodiesels relative to regular diesel and linked them to the degree of unsaturation or the number of double bonds in the molecular structure of long-chain biodiesel fuels. We report herein a numerical investigation on the structure and emission characteristics of triple flames burning n-heptane and 1-heptene fuels, which represent, respectively, the hydrocarbon side chain of the saturated (methyl octanoate) and unsaturated (methyl octenoate) biodiesel surrogates. Our objective is to examine the effect of unsaturated (double) bond on NO_x and soot emissions in a flame environment containing regions of lean premised, rich premized, and nonpremixed combustion. A validated detailed kinetic model with 198 species and 4932 reactions was used to simulate triple flames in a counterflow configuration with different levels of premizing and strain rates. Results indicate that although the global structures of n-heptane and 1-heptene triple flames are quite similar, there are significant differences with respect to NO_x and polycyclic aromatic hydrocarbon (PAH) emissions from these flames. The NO_x production rates in the rich premised, lean premised, and nonpremixed zones are higher in 1-heptene flames than in n-heptane flames, and the differences become more pronounced as the level of premising is increased. The NO_x formed through the prompt, thermal, N_2O, and NNH mechanisms is also higher in 1-heptene flames. NO_x formation in the rich premised zone is primarily due to the prompt NO, that in the nonpremixed zone is through the thermal NO, and that in the lean premised zone is due to the NNH and N_2O routes. The PAH species are mainly formed in the rich premised zone, and their emissions are significantly higher in 1-heptene flames than in n-heptane flames. The reaction pathway analysis indicated that the dominant path for benzene formation involves the recombination of two propargyl (C_3H_3) radicals, and the presence of the double bond in 1-heptene provides a significant route for its production through the formation of C_3H_5. This path is not favored in the oxidation of n-heptane, as it decomposes directly to smaller alkyl radicals. Whereas the NO_x and PAH emissions decrease with the increase in strain rate, they are consistently higher in 1-heptne flames than in n-heptane flames, irrespective of the strain rate.
机译:各种发动机和减震管研究都观察到,与常规柴油相比,生物柴油燃烧产生的NO_x排放增加,并将它们与不饱和度或长链生物柴油燃料分子结构中的双键数量联系起来。我们在此报告了关于燃烧正庚烷和1-庚烯燃料的三重火焰的结构和排放特性的数值研究,这三种火焰分别代表饱和(辛酸甲酯)和不饱和(辛烯酸甲酯)生物柴油替代物的烃侧链。我们的目标是研究在火焰环境(包含稀薄前提,富燃和非预混燃烧)的火焰环境中,不饱和(双)键对NO_x和烟尘排放的影响。经过验证的详细动力学模型具有198种和4932个反应,被用来模拟在逆流配置中的三重火焰,并具有不同的预浸和应变率水平。结果表明,尽管正庚烷和1-庚烯三重火焰的整体结构非常相似,但这些火焰的NO_x和多环芳烃(PAH)排放却存在显着差异。 1-庚烯火焰中,在富前提,贫前提和非预混合区中的NO_x生产率要高于正庚烷火焰中的NO_x生产率,并且随着前提水平的提高,差异变得更加明显。通过快速,热,N_2O和NNH机理形成的NO_x在1-庚烯火焰中也较高。富前提区中NO_x的形成主要是由于瞬时NO引起的,非预混合区中NO的形成是通过热NO引起的,贫油前提区中的NO_x形成是由于NNH和N_2O路线引起的。 PAH物种主要在富集的前提区域中形成,并且它们的排放在1-庚烯火焰中明显高于在正庚烷火焰中。反应路径分析表明,苯形成的主要路径涉及两个炔丙基(C_3H_3)自由基的重组,并且1-庚烯中双键的存在为其通过形成C_3H_5的生产提供了重要途径。在正庚烷的氧化中,该路径不适合使用,因为它会直接分解为较小的烷基。尽管NO_x和PAH排放随应变速率的增加而降低,但无论应变速率如何,它们在1-庚烷火焰中的排放始终高于正庚烷火焰。

著录项

  • 来源
    《Energy & fuels》 |2013年第janaafeba期|537-548|共12页
  • 作者单位

    Department of Mechanical and Industrial Engineering, University of Illinois at Chicago, Chicago, Illinois 60607, United States;

    Department of Mechanical and Industrial Engineering, University of Illinois at Chicago, Chicago, Illinois 60607, United States;

    Department of Mechanical and Industrial Engineering, University of Illinois at Chicago, Chicago, Illinois 60607, United States;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

  • 入库时间 2022-08-18 00:40:48

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号