首页> 外文期刊>Energy & fuels >Promising Pathway for Algal Biofuels through Wastewater Cultivation and Hydrothermal Conversion
【24h】

Promising Pathway for Algal Biofuels through Wastewater Cultivation and Hydrothermal Conversion

机译:藻类生物燃料通过废水培养和水热转化的有前途的途径

获取原文
获取原文并翻译 | 示例
获取外文期刊封面目录资料

摘要

The purpose of this study is to demonstrate feasibility of an integrated wastewater algae-to-biocrude process that can sustainably cultivate algal biomass for biofuel production. This process used pilot-scale algal cultivation ponds fed with municipal wastewater as the nutrient source. The open ponds were self-inoculated from the wastewater source, resulting in a mixed-culture microalgal community with distinct differences compared to laboratory-maintained and fertilized monocultures: 29.0% dry weight (dw) ash, 48.9% ash-free dry weight (afdw) carbon, 37.5% afdw oxygen, and 14.0% afdw lipid. The harvested algae was processed using hydrothermal liquefaction at 350℃ (autogenous pressures up to 2000 psig) for 1 h using 3 g of freeze-dried algae and 50 mL of water. The yield of biocrude was 44.5 ± 4.7% afdw, with an elemental weight percent composition of 78.7% carbon, 10.1% hydrogen, 4.4% nitrogen, and 5.5% oxygen and an energy content of 39 MJ/kg. Hydrothermal processing also resulted in the formation of 18.4 ± 4.6% afdw aqueous co-products (ACPs) and 45.0 ± 5.9% dw solid biochar. The ACPs contained 4550 ± 460 mg L~(-1) organic carbon, 1640 ± 250 mgL~(-1) total nitrogen, and 3.5 mg L~(-1) total phosphorus. The solid biochar product contained >20% dw carbon with an energy density between 8 and 10 MJ kg~(-1). This study is the first hydrothermal liquefaction paper of wastewater-derived microalgae. The municipal wastewater matrix and resultant mixed-culture biomass significantly influenced liquefaction product distribution, yielding a higher proportion of biochar, which may be a valuable co-product This paper explores the potential for wastewater-fed algal systems integrated with hydrothermal liquefaction, which together overcome challenges identified by the 2012 National Research Council's report on algal biofuel sustainability.
机译:这项研究的目的是证明废水藻类转化为生物原油的集成工艺的可行性,该工艺可以可持续地培养藻类生物质以生产生物燃料。该过程使用中试规模的藻类养殖池,以市政废水作为营养源。开敞的池塘是从废水源中自我接种的,形成了混合培养的微藻群落,与实验室维护和施肥的单培养相比具有明显差异:干重(dw)为29.0%,无灰干重(afdw为48.9%) )碳,37.5%afdw的氧气和14.0%afdw的脂质。使用3 g冻干藻类和50 mL水在350℃(自生压力高达2000 psig)下使用水热液化将收获的藻类处理1小时。生物粗品的产率为44.5±4.7%afdw,具有78.7%的碳,10.1%的氢,4.4%的氮和5.5%的氧的元素重量百分数组成,并且能量含量为39MJ / kg。水热加工还导致形成了18.4±4.6%afdw含水副产物(ACP)和45.0±5.9%dw固体生物炭。 ACP包含4550±460 mg L〜(-1)有机碳,1640±250 mgL〜(-1)总氮和3.5 mg L〜(-1)总磷。固体生物炭产物含有> 20%dw的碳,能量密度在8到10 MJ kg〜(-1)之间。这项研究是废水衍生的微藻的第一个水热液化纸。市政废水基质和由此产生的混合培养生物量极大地影响了液化产物的分布,产生了更高比例的生物炭,这可能是有价值的副产物。本文探索了将废水补给的藻类系统与水热液化相结合的潜力,该系统可共同克服2012年国家研究委员会关于藻类生物燃料可持续性的报告指出的挑战。

著录项

  • 来源
    《Energy & fuels》 |2013年第janaafeba期|857-867|共11页
  • 作者单位

    Department of Chemical and Petroleum Engineering,University of Kansas, Lawrence, Kansas 66045, United States;

    Department of Civil, Environmental, and Architectural Engineering,University of Kansas, Lawrence, Kansas 66045, United States;

    Department of Civil, Environmental, and Architectural Engineering,University of Kansas, Lawrence, Kansas 66045, United States;

    Department of Chemical and Petroleum Engineering,University of Kansas, Lawrence, Kansas 66045, United States;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号