首页> 外文期刊>Energy & fuels >Underinhibited Hydrate Formation and Transport Investigated Using a Single-Pass Gas-Dominant Flowloop
【24h】

Underinhibited Hydrate Formation and Transport Investigated Using a Single-Pass Gas-Dominant Flowloop

机译:使用单程气体优势流环研究了抑制不足的水合物形成和运输

获取原文
获取原文并翻译 | 示例
       

摘要

There are substantial economic and operational incentives to reduce the volumes of thermodynamic inhibitors (THIs) injected in deepwater oil and gas pipelines to a minimum threshold necessary to achieve a flowable hydrate slurry and prevent hydrate deposition; however, there is uncertainty about whether this underinhibited condition may worsen hydrate transportability and increase plugging potential. In this study, hydrate formation rate and hydrodynamic pressure drop were measured over a range of temperatures and subcoolings using a one-inch single-pass flowloop containing aqueous monoethylene glycol (MEG) solutions (0-40 wt %) at a liquid loading of 5 vol % and a synthetic natural gas at an initial pipeline pressure of 103 MPa (1500 psia). Measured average formation rates in this gas dominant flow were within a factor of 2 of the kinetic rate and about 250 times fester than that expected for oil dominant flows. When the system was underinhibited with MEG, the pressure drop behavior over time was consistent with a proposed conceptual description for hydrate plugging in gas-condensate pipelines based on the mechanisms of stenosis (narrowing of the pipeline due to the deposition of a hydrate coat at the pipe wall) and sloughing (shear breaking of the hydrate deposits). The results from experiments performed at constant temperature showed that increasing the MEG dosage reduced hydrate formation rates and improved hydrate transportability. However, at decreasing temperatures, increasing the concentration of MEG to maintain a constant subcooling (and formation rate) appeared to promote hydrate sloughing. In certain experiments, it was possible to estimate the average deposition rate over the entire flowloop in addition to the average formation rate. Although formation rates were correlated with subcooling (rather than MEG concentration), the deposition rates were constant over the subcooling range (3.1 to 5.5 ℃) achieved with MEG concentrations of 0 to 2096.
机译:有大量的经济和操作上的诱因将注入深水石油和天然气管道的热力学抑制剂(THIs)的量减少到实现可流动的水合物淤浆和防止水合物沉积所必需的最小阈值;但是,对于这种抑制不足的条件是否会恶化水合物的可运输性并增加堵塞的可能性尚不确定。在这项研究中,使用含有水的单乙二醇(MEG)溶液(0-40 wt%)的1英寸单程流通管,在液体负荷为5的条件下,在一定温度和过冷条件下测量了水合物的形成速率和流体动压降。初始管道压力为103 MPa(1500 psia)时使用合成气。在该天然气主流中测得的平均地层形成速率是动力学速率的2倍,并且比石油主流的预期速率高出约250倍。当系统未充分抑制MEG时,随着时间的推移,压降行为与基于狭窄机理的气体冷凝水管道中水合物堵塞的建议概念描述相符(由于水合物涂层沉积在管道上而使管道变窄)。管壁)和脱落(水合物沉积物的剪切破坏)。在恒定温度下进行的实验结果表明,增加MEG用量可减少水合物的生成速率并改善水合物的运输能力。但是,在降低的温度下,增加MEG的浓度以保持恒定的过冷度(和形成速率)似乎会促进水合物的塌落。在某些实验中,除了平均形成速率外,还可以估计整个流动回路的平均沉积速率。尽管形成速率与过冷(而不是MEG浓度)相关,但在MEG浓度为0至2096时达到的过冷范围(3.1至5.5℃)下,沉积速率是恒定的。

著录项

  • 来源
    《Energy & fuels》 |2014年第novaadeca期|7274-7284|共11页
  • 作者单位

    CSIRO Earth Science and Resource Engineering, 26 Dick Perry Avenue, Kensington, Western Australia 6151, Australia,Centre for Energy, School of Mechanical and Chemical Engineering, University of Western Australia, 35 Stirling Highway, Crawley, Western Australia 6009, Australia;

    Centre for Energy, School of Mechanical and Chemical Engineering, University of Western Australia, 35 Stirling Highway, Crawley, Western Australia 6009, Australia;

    CSIRO Earth Science and Resource Engineering, 26 Dick Perry Avenue, Kensington, Western Australia 6151, Australia;

    Centre for Energy, School of Mechanical and Chemical Engineering, University of Western Australia, 35 Stirling Highway, Crawley, Western Australia 6009, Australia;

    Centre for Energy, School of Mechanical and Chemical Engineering, University of Western Australia, 35 Stirling Highway, Crawley, Western Australia 6009, Australia;

    Centre for Energy, School of Mechanical and Chemical Engineering, University of Western Australia, 35 Stirling Highway, Crawley, Western Australia 6009, Australia;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

  • 入库时间 2022-08-18 00:40:36

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号