...
首页> 外文期刊>Energy & fuels >Initial Pyrolysis Mechanism of Oil Shale Kerogen with Reactive Molecular Dynamics Simulation
【24h】

Initial Pyrolysis Mechanism of Oil Shale Kerogen with Reactive Molecular Dynamics Simulation

机译:反应性分子动力学模拟的油页岩干酪根初始热解机理

获取原文
获取原文并翻译 | 示例
           

摘要

Molecular dynamics (MD) simulations using a reactive force field (ReaxFF) method for a Green River oil shale model demonstrate that the thermal decomposition of the oil shale molecule is initiated with the cleavage of the oxygen bridge (C-O bond), and the first product is formaldehyde (CH2O). The simulation results show that the C-O bond is weaker than the other bonds, agreeing with its smaller bond dissociation energy (BDE). The ring-opening position of the aliphatic ring is usually determined by the stability of free radicals formed in this process. For aromatic hydrocarbons, the long-chain substituents are found to be easier to leave and the cleavage of C-C bonds leads to a series of chain reactions and the formation of small fragments, such as ethylene and propylene. The bond cleavages are almost in accordance with the minimum bonding energy rule. NVT simulations show that the pyrolysis process progresses in two stages: the decomposition of kerogen into heavy (C40+.) species and then the generation of light compounds. Recombinations and rearrangements of different fragments are also observed via MD simulations. The main hydrocarbon fragments of C-10-C-20 are regarded as the component or precursor of diesel oil. The formation pathways of typical aromatic components are analyzed by tracking the motion trajectories of relevant structures. The intermediates and products in MD simulations are found to be similar to the gas chromatography mass spectrometry (GC-MS) results from previous experiments.
机译:使用反作用力场(ReaxFF)方法对Green River油页岩模型进行的分子动力学(MD)模拟表明,油页岩分子的热分解是通过氧桥的裂解(CO键)和第一个产物而开始的是甲醛(CH2O)。模拟结果表明,C-O键比其他键弱,与其较小的键离解能(BDE)相符。脂族环的开环位置通常由在该方法中形成的自由基的稳定性决定。对于芳族烃,发现长链取代基更容易脱离,并且C-C键的断裂导致一系列链反应和小片段的形成,例如乙烯和丙烯。键断裂几乎符合最小键能规则。 NVT模拟显示热解过程分为两个阶段:将干酪根分解为重(C40 +。)物质,然后生成轻化合物。通过MD模拟也观察到了不同片段的重组和重排。 C-10-C-20的主要烃片段被视为柴油的成分或前体。通过跟踪相关结构的运动轨迹,分析了典型芳香成分的形成途径。发现MD模拟中的中间体和产物与先前实验的气相色谱质谱(GC-MS)结果相似。

著录项

  • 来源
    《Energy & fuels》 |2015年第mayajuna期|2987-2997|共11页
  • 作者单位

    Chinese Acad Sci, Inst Proc Engn, State Key Lab Multiphase Complex Syst, Beijing 100190, Peoples R China|Univ Chinese Acad Sci, Beijing 100049, Peoples R China;

    Chinese Acad Sci, Inst Proc Engn, State Key Lab Multiphase Complex Syst, Beijing 100190, Peoples R China;

    Chinese Acad Sci, Inst Proc Engn, State Key Lab Multiphase Complex Syst, Beijing 100190, Peoples R China|Univ Chinese Acad Sci, Beijing 100049, Peoples R China;

    Chinese Acad Sci, Inst Proc Engn, State Key Lab Multiphase Complex Syst, Beijing 100190, Peoples R China;

    Univ Chinese Acad Sci, Beijing 100049, Peoples R China;

    Chinese Acad Sci, Inst Proc Engn, State Key Lab Multiphase Complex Syst, Beijing 100190, Peoples R China;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号