...
首页> 外文期刊>Energy & fuels >General Gas Permeability Model for Porous Media: Bridging the Gaps Between Conventional and Unconventional Natural Gas Reservoirs
【24h】

General Gas Permeability Model for Porous Media: Bridging the Gaps Between Conventional and Unconventional Natural Gas Reservoirs

机译:多孔介质的通用气体渗透率模型:弥合常规和非常规天然气储层之间的差距

获取原文
获取原文并翻译 | 示例
           

摘要

Many field observations have indicated that permeabilities of both conventional and unconventional gas reservoirs are not constant when gas pressure drops. For conventional reservoirs, permeability will decrease while for unconventional gas rocks, the apparent permeability may increase as gas pressure decreases to a lower magnitude. Evolution trends of permeability for different natural gas reservoirs are distinct. These differences are observed by laboratory experiments of sandstones, coals, or shales. In this study, we present a general permeability model to bridge the gaps between conventional and unconventional gas reservoirs. This model coupled three critical factors namely effective stress, adsorption, and flow regimes to reflect dynamic performances of permeability. On the basis of specific reservoirs properties, the model degenerates into four reduced types. The first reduced model is applicable for reservoirs with lower adsorption capacity. The second reduced model is adopted by unconventional reservoirs like coal seams when the intrinsic permeability is big and adsorption capacity is high. For the third reduced model, effective stress is the dominating factor for permeability evolution, which means that it is applicable for conventional reservoirs like sandstones. Unconventional gas reservoirs with low adsorption capacity like gas shales can apply the fourth reduced model because the flow regimes dominate the evolution. These reduced models are verified against the experimental data. Results show that effective stress is the main reason for the change of permeability for conventional gas reservoirs. Both effective stress and flow regimes together determine the apparent permeability of unconventional gas reservoirs. The impact of adsorption on permeability is relatively small. Permeability evolution trends can be classified into different zones for conventional and unconventional gas reservoirs. When the gas is depleted from reservoirs, the gas permeability has two bounds. For the upper bound, permeability is only affected by flow regimes and the apparent permeability will increase when gas pressure drops. For the lower bound, permeability is only affected by effective stress and the apparent permeability will decrease when the gas is depleted from the reservoirs.
机译:许多现场观察表明,当气压下降时,常规气藏和非常规气藏的渗透率都不恒定。对于常规储层,渗透率会降低,而对于非常规气藏,表观渗透率可能会随着气压降低到较低值而增加。不同天然气藏的渗透率演化趋势是不同的。这些差异是通过砂岩,煤或页岩的实验室实验观察到的。在这项研究中,我们提出了一个通用的渗透率模型来弥合常规和非常规气藏之间的差距。该模型耦合了三个关键因素,即有效应力,吸附和流动状态,以反映渗透性的动态性能。根据特定的油藏属性,模型退化为四种简化类型。第一个简化模型适用于吸附能力较低的储层。当固有渗透率大且吸附能力高时,非常规储层(如煤层)采用第二个简化模型。对于第三个简化模型,有效应力是渗透率演化的主要因素,这意味着它适用于诸如砂岩的常规油藏。具有低吸附能力的非常规气藏(例如页岩)可以应用第四简化模型,因为流动方式主导了演化。根据实验数据验证了这些简化的模型。结果表明,有效应力是常规气藏渗透率变化的主要原因。有效应力和流动状态共同决定了非常规气藏的表观渗透率。吸附对渗透率的影响相对较小。常规和非常规气藏的渗透率演化趋势可分为不同区域。当气体从储层中耗尽时,气体渗透率具有两个界限。对于上限,渗透率仅受流动状态的影响,当气压下降时,表观渗透率将增加。对于下限,渗透率仅受有效应力影响,当从储层中抽出天然气时,表观渗透率将降低。

著录项

  • 来源
    《Energy & fuels》 |2016年第julaspeca期|5492-5505|共14页
  • 作者单位

    Univ Western Australia, Sch Mech & Chem Engn, 35 Stirling Highway, Perth, WA 6009, Australia;

    Univ Western Australia, Sch Mech & Chem Engn, 35 Stirling Highway, Perth, WA 6009, Australia|Chinese Acad Sci, Inst Rock & Soil Mech, State Key Lab Geomech & Geotech Engn, Wuhan 430071, Peoples R China;

    Univ Western Australia, Sch Mech & Chem Engn, 35 Stirling Highway, Perth, WA 6009, Australia;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号