首页> 外文期刊>Energy & fuels >Influence of Torrefaction on Biomass Gasification Performance in a High-Temperature Entrained-Flow Reactor
【24h】

Influence of Torrefaction on Biomass Gasification Performance in a High-Temperature Entrained-Flow Reactor

机译:高温气流床反应器中焙烧对生物质气化性能的影响

获取原文
获取原文并翻译 | 示例
       

摘要

In the present work, the gasification performances of two pairs of raw and torrefied biomasses, including raw forest residue and torrefied forest residue, and raw spruce and torrefied spruce in a high-temperature entrained-flow reactor, are numerically examined and compared to each other using a Eulerian-Lagrangian CFD model developed based on OpenFOAM. Moreover, the sensitivities of three important operating parameters (excess air ratio, steam/carbon molar ratio, and biomass particle diameter), which vary in the range of practical significance, are also tested. The calculated results are analyzed both qualitatively and quantitatively by five indicators: isothermal profiles, char consumption rate, gas compositions, species yield, and carbon conversion along the reactor length. The obtained results show that torrefied biomass can increase the maximum temperature in the reactor as compared to its raw parent fuel. During gasification, CO, H-2, and CO2 are the major species in the product gas and CH4 accounts for only a very small fraction of the syngas at such a high operating temperature of 1400 degrees C. As expected, the higher the excess air ratio, the lower the H-2 yield and higher CO2 production and carbon conversion; a rise in the steam/carbon molar ratio promotes the H-2 yield but reduces the CO production; and both the H-2 and CO yields and carbon conversion decrease with increasing particle diameter. In addition, three reaction zones can be recognized from the carbon conversion along the reactor length, and such information is useful for optimal reactor design. In all cases, torrefaction consistently reduces both the H-2 production and carbon conversion as compared to its raw biomass under the same operating conditions, which suggests that torrefied biomass requires a bigger length entrained-flow gasifier or longer particle residence time to achieve the same level of conversion as that for its raw biomass.
机译:在目前的工作中,在高温夹带流反应器中,对两对生的和焙炒的生物量,包括原始森林残留物和焙炒的森林残渣,以及云杉和焙制的云杉的气化性能进行了数值检查,并进行了比较。使用基于OpenFOAM开发的欧拉-拉格朗日CFD模型。此外,还测试了三个重要操作参数(过量空气比,蒸汽/碳摩尔比和生物质粒径)的敏感性,这些敏感性在实际意义上有所不同。通过五个指标对计算结果进行定性和定量分析:等温曲线,焦炭消耗率,气体成分,物质产率和沿反应器长度的碳转化率。所获得的结果表明,与其原始母燃料相比,焙烧的生物质可以提高反应堆的最高温度。在气化过程中,CO,H-2和CO2是产物气中的主要物质,在如此高的1400摄氏度工作温度下,CH4仅占合成气的一小部分。如所预期的,过量空气越高H 2收率越低,CO 2产生和碳转化率越高;蒸汽/碳摩尔比的增加促进了H-2的产率,但降低了CO的产生; H-2和CO的收率和碳转化率均随粒径的增加而降低。另外,可以从沿着反应器长度的碳转化识别三个反应区,并且这种信息对于优化反应器设计是有用的。在所有情况下,在相同的操作条件下,与原始生物质相比,焙烧均会同时降低H-2的产生和碳转化,这表明焙干生物质需要更长的气流床气化炉或更长的颗粒停留时间才能达到相同的目的。转化水平与其原始生物质的转化水平相同。

著录项

  • 来源
    《Energy & fuels》 |2016年第5期|4053-4064|共12页
  • 作者单位

    Zhejiang Univ, Dept Mech, State Key Lab Fluid Power Transmiss & Control, Hangzhou 310027, Zhejiang, Peoples R China;

    Zhejiang Univ, Dept Mech, State Key Lab Fluid Power Transmiss & Control, Hangzhou 310027, Zhejiang, Peoples R China|China Jiliang Univ, Hangzhou 310018, Zhejiang, Peoples R China;

    Zhejiang Univ, Dept Mech, State Key Lab Fluid Power Transmiss & Control, Hangzhou 310027, Zhejiang, Peoples R China;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

  • 入库时间 2022-08-18 00:39:59

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号