首页> 外文期刊>Energy & fuels >Formation of Methane Clathrate Hydrates in Coal Moisture: Implications for Coalbed Methane Resources and Reservoir Pressures
【24h】

Formation of Methane Clathrate Hydrates in Coal Moisture: Implications for Coalbed Methane Resources and Reservoir Pressures

机译:煤水分中甲烷包合物水合物的形成:对煤层气资源和储层压力的影响

获取原文
获取原文并翻译 | 示例
           

摘要

Adsorption, X-ray diffraction, and nuclear magnetic resonance analysis of subbituminous to high-volatile bituminous coal at in situ moisture content, low temperatures, and moderate pressures demonstrate that a significant proportion of the inherent moisture (nonmobile water) is available to form methane clathrate hydrates. These results have implications for coal gas resources and reservoir pressures in current areas of permafrost and the much larger regions that were glaciated during the Pleistocene. Methane adsorption tests indicate the clathrates form comparatively rapidly in coal micro- and mesopores from an immobile water phase, at lower pressures than those formed in macroporous materials. At successively higher experimental pressures, hydrates nucleate and grow rapidly on the scale of minutes to hours, until an apparent equilibrium pressure is reached. The onset of hydrate formation at 0 degrees C is at about 3.25 MPa for a Tarn coal with 33% moisture and at slightly higher pressures for the other coals with lower inherent moisture. The amount of gas consumed in hydrate formation, in excess of that attributed to sorption, is 11.6 cm(3)/g coal for the Tarn coal (Alaska) with 33% moisture, 8.15 cm(3)/g coal for a Dietz coal (Wyoming) with 22% moisture, and 1.85 cm(3)/g coal for a Texas coal with about 8% moisture. On a volume of gas (STP) per volume of water basis at 8 MPa, the Tarn and Dietz coal have similar values (35 and 37 cm(3)/cm(3)), whereas the Texas coal is measureably less (24 cm(3)/cm(3)). At 8 MPa and 0 degrees C, about 20% of the inherent moisture has participated in hydrate formation for the Tarn and Deitz coals and 13% for the Texas coal. If hydrate formation strips methane from the sorbed state, the proportion of water contributing to hydrate calculates was over 100% for the Texas coal, which suggests that methane is mainly forming from free gas. The methane hydrates analyzed by X-ray diffraction and nuclear magnetic resonance (NMR) spectroscopy are cubic (Pm3 (n) over bar space group) and have small and large cage sI structures. NMR and PXRD spectra indicates that the small cages are about 90% occupied, while the large cages are completely full, yielding a stoichiometry of ca. CH center dot 6H(2)O, which is consistent with other natural hydrates. There is some evidence that some methane gas remains trapped in the smallest pores, whereas the hydrates occupy large pores, which may be due to the suppression of hydrate formation by high capillary pressures. The formation of methane hydrates, particularly in low-rank coals, markedly increases the capacity of the coal to store gas. Depending on the coal moisture content and coal rank, methane storage capacity in gas hydrates is up to 2 orders of magnitude greater than the gas storage capacity of the coal by sorption alone. Since low-rank coals invariably have high moisture content, if the strata lie with the hydrate stability zone, significant gas storage in hydrates is anticipated, if gas is available. At the low temperature required for hydrate formation, however, self-sourced methane from methanogenesis or thermal alteration is not anticipated. Successive formation and dissociation of methane hydrates during glacial and interglacial times in the Pleistocene can be anticipated to have impacted shallow gas reservoirs, including coals, to depth up to about 800 m, depending on the surface temperature and geothermal gradient.
机译:在原位含水量,低温和中等压力下,对次沥青至高挥发性烟煤的吸附,X射线衍射和核磁共振分析表明,很大一部分固有水分(非流动水)可用于形成甲烷笼形水合物。这些结果对目前的多年冻土地区以及更新世期间冰川更大的地区的煤气资源和储层压力有影响。甲烷吸附测试表明,包合物在固定水相的煤微孔和中孔中形成的速度相对较快,压力低于在大孔材料中形成的速率。在连续较高的实验压力下,水合物成核并在数分钟至数小时的范围内迅速生长,直至达到表观平衡压力。对于含水量为33%的塔恩省煤,在0℃时水合物形成的起始温度约为3.25 MPa,而对于固有水分较低的其他煤,其水合物的形成压力约为较高的压力。水合物形成过程中消耗的气体量(超过吸附引起的气体消耗量)对于含33%水分的塔恩煤(阿拉斯加)为11.6 cm(3)/ g煤,对于Dietz煤为8.15 cm(3)/ g煤(怀俄明州)的水分含量为22%,每克含煤1.85厘米(3)/克,得克萨斯州的煤炭含量为8%。在8 MPa的压力下,以每体积水的天然气量(STP)为基础,塔恩族和Dietz煤具有相似的值(35和37 cm(3)/ cm(3)),而德克萨斯州的煤要少得多(24 cm (3)/ cm(3))。在8 MPa和0摄氏度下,塔恩和德伊茨煤的水合物形成中约有20%的固有水分参与其中,德克萨斯州煤中约13%的水分参与了水合物的形成过程。如果水合物的形成使甲烷从吸附状态中脱出,那么据计算,得克萨斯州的煤中水合物占水合物的比例超过100%,这表明甲烷主要由自由气体形成。通过X射线衍射和核磁共振(NMR)光谱分析的甲烷水合物是立方的(在巴空间基团上为Pm3(n)),并具有小笼型sI结构。 NMR和PXRD光谱表明,小笼子占据了大约90%的空间,而大笼子完全充满了,产生的化学计量约为。 CH中心点6H(2)O,与其他天然水合物一致。有证据表明,一些甲烷气体仍留在最小的孔中,而水合物则占据大孔,这可能是由于高毛细管压力抑制了水合物的形成。甲烷水合物的形成,特别是在低品位煤中的形成,显着提高了煤储存气体的能力。取决于煤的水分含量和煤的等级,气体水合物中的甲烷储存能力比仅通过吸附的煤的气体储存能力高多达2个数量级。由于低阶煤总是具有较高的水分含量,因此如果地层位于水合物稳定区,那么如果有天然气的话,就有望在水合物中大量储气。然而,在水合物形成所需的低温下,预计不会因甲烷生成或热改变而自产甲烷。可以预期,在更新世的冰川期和冰川间期,甲烷水合物的连续形成和分解会影响包括煤炭在内的浅层气藏,其深度可达800 m,这取决于地表温度和地热梯度。

著录项

  • 来源
    《Energy & fuels》 |2016年第1期|88-97|共10页
  • 作者单位

    Univ British Columbia, Dept Earth Ocean & Atmospher Sci, Vancouver, BC BCV6T 1Z4, Canada;

    Univ British Columbia, Dept Earth Ocean & Atmospher Sci, Vancouver, BC BCV6T 1Z4, Canada;

    Max Planck Gesell, Hofgartenstr 8, D-80539 Munich, Germany;

    Natl Inst Adv Ind Sci & Technol, Cent 5,1-1-1 Higashi, Tsukuba, Ibaraki 3058565, Japan;

    Natl Res Council Canada, Steacie Inst Mol Sci, Ottawa, ON K1A 0R6, Canada;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号