首页> 外文期刊>Energy & fuels >Coal-on-a-Chip: Visualizing Flow in Coal Fractures
【24h】

Coal-on-a-Chip: Visualizing Flow in Coal Fractures

机译:单片煤:可视化煤裂缝中的流动

获取原文
获取原文并翻译 | 示例
       

摘要

Geomaterial microfluidics are the next generation of tools necessary for studying fluid flows related to subsurface engineering technologies. Traditional microfluidic devices do not capture surface wettability and roughness parameters that can have a significant influence on porous media flows. This is particularly important for coal seam gas reservoirs in which methane gas is transported through a well-developed system of natural fractures that display unique wettability and roughness characteristics. A coal geomaterial microfluidic device can be generated by etching a fracture pattern on a coal surface by using three-dimensional laser micromachining; however, it is unclear if the resulting surface properties are representative of real coal. In an effort to generate a realistic coal microfluidic device, we characterize coal surface roughness properties from real coal cleats. We then compare these results to the roughness of the patterns, generated from laser etching. Roughness measurements in real coal fractures show that cleats and microfractures are mostly oriented parallel to the coal beddings rather than perpendicular to the bedding, which is important when selecting coal for fabrication of a microfluidic device since we find that the natural microfractures influence the resulting roughness of etched fractures. We also compare resulting coal/brine/gas contact angles under static and dynamics conditions. The contact angle for coal is highly heterogeneous. Surface roughness and pore pressure may influence the contact angle. With the aid of the coal geomaterial device, the effect of these parameters on coal wettability can be explored and a range of possible coal contact angles can be visualized and represented. The geomaterial fabrication, as outlined herein, provides a tool to capture more realistic coal surface properties in microfluidics experiments.
机译:土工材料微流体技术是研究与地下工程技术相关的流体流动所必需的下一代工具。传统的微流体设备无法捕获可能对多孔介质流动产生重大影响的表面润湿性和粗糙度参数。这对于煤层气储层特别重要,在该储层中,甲烷气体通过发达的天然裂缝系统传输,具有独特的润湿性和粗糙度特征。可以通过使用三维激光微加工在煤表面上蚀刻裂缝图案来产生煤土材料微流体装置。但是,尚不清楚最终的表面性质是否能代表真正的煤。为了生成逼真的煤炭微流控设备,我们从真实的煤夹板表征了煤炭表面的粗糙度特性。然后,我们将这些结果与由激光蚀刻产生的图案的粗糙度进行比较。实际煤裂缝中的粗糙度测量结果表明,割理和微裂缝的取向大多与煤层理平行,而不是与煤层垂直,这在选择煤炭制造微流体装置时非常重要,因为我们发现自然的微裂缝会影响最终的煤层粗糙度。蚀刻的裂缝。我们还比较了在静态和动态条件下产生的煤/盐水/天然气接触角。煤的接触角高度不均匀。表面粗糙度和孔隙压力可能会影响接触角。借助于煤土材料设备,可以探索这些参数对煤润湿性的影响,并且可以可视化和表示一系列可能的煤接触角。如本文所述,土工材料制造提供了一种在微流控实验中捕获更真实的煤表面性质的工具。

著录项

  • 来源
    《Energy & fuels》 |2017年第10期|10393-10403|共11页
  • 作者单位

    Univ New South Wales, Sch Petr Engn, Tyree Energy Technol Bldg,Kensington Campus, Sydney, NSW 2052, Australia;

    Univ New South Wales, Sch Petr Engn, Tyree Energy Technol Bldg,Kensington Campus, Sydney, NSW 2052, Australia;

    Macquarie Univ, Ctr Lasers & Applicat, Div Informat & Commun Sci, Sydney, NSW 2109, Australia;

    Univ New South Wales, Australian Ctr Nanomed, Sch Mech & Mfg Engn, Sydney, NSW 2052, Australia;

    Sultan Qaboos Univ, Oil & Gas Res Ctr, Muscat, Oman;

    Univ New South Wales, Sch Petr Engn, Tyree Energy Technol Bldg,Kensington Campus, Sydney, NSW 2052, Australia;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

  • 入库时间 2022-08-18 00:39:42

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号